cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356539 a(n) = Sum_{d|n} d * 3^(n-d).

Original entry on oeis.org

1, 5, 12, 49, 86, 492, 736, 3977, 8757, 34030, 59060, 384924, 531454, 2672528, 6672552, 26093113, 43046738, 261646137, 387420508, 2181624374, 4682526672, 17435870644, 31381059632, 204908769276, 299863458511, 1412168408630, 3392641222200, 13912336721584
Offset: 1

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # * 3^(n - #) &]; Array[a, 30] (* Amiram Eldar, Aug 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d*3^(n-d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-(3*x)^k)))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - (3 * x)^k).
If p is prime, a(p) = p + 3^(p-1).

A356538 Expansion of e.g.f. Product_{k>0} 1/(1 - (2 * x)^k)^(1/2^k).

Original entry on oeis.org

1, 1, 5, 27, 249, 2085, 30645, 354375, 6542865, 108554985, 2330525925, 45331607475, 1288779532425, 28889867731725, 876160258298325, 25315531795929375, 860642393272286625, 26527678331237708625, 1063065483349950205125, 36393649136002135852875
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(2*x)^k)^(1/2^k))))
    
  • PARI
    a090879(n) = sumdiv(n, d, d*2^(n-d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a090879(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A090879(k) * a(n-k)/(n-k)!.
Showing 1-2 of 2 results.