A358904 Number of finite sets of compositions with all equal sums and total sum n.
1, 1, 2, 4, 9, 16, 38, 64, 156, 260, 632, 1024, 2601, 4096, 10208, 16944, 40966, 65536, 168672, 262144, 656980, 1090240, 2620928, 4194304, 10862100, 16781584, 41940992, 69872384, 168403448, 268435456, 693528552, 1073741824, 2695006177, 4473400320, 10737385472
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 9 sets: {(1)} {(2)} {(3)} {(4)} {(11)} {(12)} {(13)} {(21)} {(22)} {(111)} {(31)} {(112)} {(121)} {(211)} {(1111)} {(2),(11)}
Programs
-
Mathematica
Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
-
PARI
a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ Michel Marcus, Dec 14 2022
Formula
a(n>0) = Sum_{d|n} binomial(2^(d-1),n/d).