cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 270 results. Next

A101508 Product of binomial matrix and the Mobius matrix A051731.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 3, 1, 16, 8, 6, 4, 1, 32, 16, 11, 10, 5, 1, 64, 32, 21, 20, 15, 6, 1, 128, 64, 42, 36, 35, 21, 7, 1, 256, 128, 85, 64, 70, 56, 28, 8, 1, 512, 256, 171, 120, 127, 126, 84, 36, 9, 1, 1024, 512, 342, 240, 220, 252, 210, 120, 45, 10, 1, 2048, 1024, 683, 496, 385, 463, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2004

Keywords

Comments

Row sums are A101509. Diagonal sums are A101510.
The matrix inverse appears to be A128313. - R. J. Mathar, Mar 22 2013
Read as upper triangular matrix, this can be seen as "recurrences in A135356 applied to A023531" [Paul Curtz, Mar 03 2017]. - The columns are: A000079, A131577, A024495, A000749, A139761, ... Column n differs after the (n+1)-th nonzero term on from the binomial coefficients C(k,n). - M. F. Hasler, Mar 05 2017

Examples

			Rows begin
  1;
  2,1;
  4,2,1;
  8,4,3,1;
  16,8,6,4,1;
  ...
		

Programs

  • Maple
    A101508 := proc(n,k)
        a := 0 ;
        for i from 0 to n do
            if modp(i+1,k+1) = 0 then
                a := a+binomial(n,i) ;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    t[n_, k_] := Sum[If[Mod[i + 1, k + 1] == 0, Binomial[n, i], 0], {i, 0, n}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
  • PARI
    T(n,k)=sum(i=0,n, if((i+1)%(k+1)==0, binomial(n, i))) \\ M. F. Hasler, Mar 05 2017

Formula

T(n, k) = Sum_{i=0..n} if(mod(i+1, k+1)=0, binomial(n, i), 0).
Rows have g.f. x^k/((1-x)^(k+1)-x^(k+1)).

A113998 Reverse of triangle A051731.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Row sums are A000005. Diagonal sums are A001227 (?). Row k corresponds to A113999(k).

Examples

			Triangle begins
1;
1,1;
1,0,1;
1,0,1,1;
1,0,0,0,1;
1,0,0,1,1,1;
1,0,0,0,0,0,1;
1,0,0,0,1,0,1,1;
		

Formula

Sum_{k, 1<=k<=n} k*T(n,k)=A081307(n) - Philippe Deléham, Feb 03 2007

A127446 Triangle T(n,k) = n*A051731(n,k) read by rows.

Original entry on oeis.org

1, 2, 2, 3, 0, 3, 4, 4, 0, 4, 5, 0, 0, 0, 5, 6, 6, 6, 0, 0, 6, 7, 0, 0, 0, 0, 0, 7, 8, 8, 0, 8, 0, 0, 0, 8, 9, 0, 9, 0, 0, 0, 0, 0, 9, 10, 10, 0, 0, 10, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 12, 12, 12, 12, 0, 12, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 14, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, Jan 14 2007

Keywords

Comments

Replace the 1's in row n of A051731 with n's.
T(n,k) is the sum of the k's in the partitions of n into equal parts. - Omar E. Pol, Nov 25 2019

Examples

			First few rows of the triangle:
  1;
  2, 2;
  3, 0, 3;
  4, 4, 0, 4;
  5, 0, 0, 0, 5;
  6, 6, 6, 0, 0, 6;
  7, 0, 0, 0, 0, 0, 7;
  ...
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the sum of the k's are [6, 6, 6, 0, 0, 6] respectively, equaling the 6th row of triangle. - _Omar E. Pol_, Nov 25 2019
		

Crossrefs

Cf. A038040 (row sums), A051731, A126988, A244051, A328362.

Programs

  • Haskell
    a127446 n k = a127446_tabl !! (n-1) !! (k-1)
    a127446_row n = a127446_tabl !! (n-1)
    a127446_tabl = zipWith (\v ws -> map (* v) ws) [1..] a051731_tabl
    -- Reinhard Zumkeller, Jan 21 2014
  • Maple
    A127446 := proc(n,k) if n mod k = 0 then n; else 0; fi; end: for n from 1 to 20 do for k from 1 to n do printf("%d,",A127446(n,k)) ; od: od: # R. J. Mathar, May 08 2009
  • Mathematica
    Flatten[Table[If[Mod[n, k] == 0, n, 0], {n, 20}, {k, n}]] (* Vincenzo Librandi, Nov 02 2016 *)

Formula

T(n,k) = k*A126988(n,k). - Omar E. Pol, Nov 25 2019

Extensions

Edited and extended by R. J. Mathar, May 08 2009

A127639 A051731 * A127640, where A127640 = infinite lower triangular matrix with the sequence of primes in the main diagonal and the rest zeros.

Original entry on oeis.org

2, 2, 3, 2, 0, 5, 2, 3, 0, 7, 2, 0, 0, 0, 11, 2, 3, 5, 0, 0, 13, 2, 0, 0, 0, 0, 0, 17, 2, 3, 0, 7, 0, 0, 0, 19, 2, 0, 5, 0, 0, 0, 0, 0, 23, 2, 3, 0, 0, 11, 0, 0, 0, 0, 29, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 2, 3, 5, 7, 0, 13, 0, 0, 0, 0, 0, 37, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 2, 3, 0, 0, 0, 0, 17, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

Row sums = A007445, inverse Mobius transform of the primes: (2, 5, 7, 12, 13, 23, ...)

Examples

			First few rows of the triangle are:
2;
2, 3;
2, 0, 5;
2, 3, 0, 7;
2, 0, 0, 0, 11;
2, 3, 5, 0, 0, 13;
...
		

Crossrefs

Programs

  • Maple
    A051731 := proc(n,k) if n mod k = 0 then 1 ; else 0 ; fi ; end: A127639 := proc(n,k) A051731(n,k)*ithprime(k) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d,", A127639(n,k)) ; od ; od ; # R. J. Mathar, Mar 14 2007

Extensions

More terms from R. J. Mathar, Mar 14 2007

A127172 Cube of A051731.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3, ...).
Row sums = A007426: (1, 4, 4, 20, 4, 16, ...).
A127172 * mu(n) = d(n); or A127172 * A008683 = A000005.
A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200.
A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20, ...); or: A127172 * A000010 = A007429.
Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425.
Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010.
A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15, ...); = A127170 * mu(n).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 0, 1;
   6, 3, 0, 1;
   3, 0, 0, 0, 1;
   9, 3, 3, 0, 0, 1;
   3, 0, 0, 0, 0, 0, 1;
  10, 6, 0, 3, 0, 0, 0, 1;
   6, 0, 3, 0, 0, 0, 0, 0, 1;
   9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3, ...) in every column k, interspersed with (k-1) zeros.

A128408 Triangle read by rows: A128407 * A051731 as infinite lower triangular matrices.

Original entry on oeis.org

1, -1, -1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, 1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 01 2007

Keywords

Comments

Left and right borders = mu(n), A008683. Row sums = A008966: (1, -2, -2, 0, -2, 4, -2, 0, 0, 4, ...). A128408 * [1,2,3,...] = A063441: (1, -3, -4, 0, -6, 12, ...). A054524 = A051731 * A128407.

Examples

			First few rows of the triangle:
   1;
  -1, -1;
  -1,  0, -1;
   0,  0,  0,  0;
  -1,  0,  0,  0, -1;
   1,  1,  1,  0,  0,  1;
  ...
		

Crossrefs

Extensions

a(45) = 0 inserted and more terms from Georg Fischer, Jun 05 2023

A133700 A051731 * A001227; a(n) = Sum_{d|n} A001227(d).

Original entry on oeis.org

1, 2, 3, 3, 3, 6, 3, 4, 6, 6, 3, 9, 3, 6, 9, 5, 3, 12, 3, 9, 9, 6, 3, 12, 6, 6, 10, 9, 3, 18, 3, 6, 9, 6, 9, 18, 3, 6, 9, 12, 3, 18, 3, 9, 18, 6, 3, 15, 6, 12, 9, 9, 3, 20, 9, 12, 9, 6, 3, 27, 3, 6, 18, 7, 9, 18, 3, 9, 9, 18, 3, 24, 3, 6, 18, 9, 9, 18, 3, 15, 15, 6, 3, 27, 9, 6, 9, 12, 3, 36, 9, 9, 9
Offset: 1

Views

Author

Gary W. Adamson, Sep 21 2007

Keywords

Examples

			a(4) = sum of row 4 terms of triangle A133699: (1 + 1 + 0 + 1) = (1, 1, 0, 1) dot (1, 1, 2, 1), where A001227 = (1, 1, 2, 1, 2, 2, 2, 1, 3, ...).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; f[2, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 28 2023 *)
  • PARI
    A133700(n) = sumdiv(n,d,numdiv(d>>valuation(d,2))); \\ Antti Karttunen, Sep 27 2018

Formula

Inverse Möbius transform of A001227, the number of odd divisors of n. Row sums of triangle A133699.
Dirichlet g.f. (zeta(s))^3*(1-1/2^s). - R. J. Mathar, Feb 07 2011
a(n) = Sum_{d|n} A001227(d). - Antti Karttunen, Sep 27 2018
Sum_{k=1..n} a(k) ~ n/4 * (log(n)^2 + (6*g - 2 + 2*log(2))*log(n) + 2 + 6*g^2 - log(2)^2 - 2*log(2) + 6*g*(log(2) - 1) - 6*sg1), where g is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Feb 02 2019
G.f.: Sum_{k>=1} tau(k)*x^k/(1 - x^(2*k)), where tau = A000005. - Ilya Gutkovskiy, Sep 13 2019
Multiplicative with a(2^e) = e+1, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Oct 28 2023

Extensions

More terms from R. J. Mathar, Jan 19 2009
Second, equivalent formula added to the definition by Antti Karttunen, Sep 27 2018

A158902 Triangle read by rows: the matrix product A051731 * A158821.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 1, 0, 1, 5, 0, 0, 0, 1, 9, 1, 1, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 12, 1, 0, 1, 0, 0, 0, 1, 11, 0, 1, 0, 0, 0, 0, 0, 1, 15, 1, 0, 0, 1, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Mar 29 2009

Keywords

Examples

			First few rows of the triangle =
1;
2, 1;
3, 0, 1;
5, 1, 0, 1;
5, 0, 0, 0, 1;
9, 1, 1, 0, 0, 1;
7, 0, 0, 0, 0, 0, 1;
12, 1, 0, 1, 0, 0, 0, 1
11, 0, 1, 0, 0, 0, 0, 0, 1;
15, 1, 0, 0, 1, 0, 0, 0, 0, 1;
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
23, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1;
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
21, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Cf. A158821, A051731, A158901, A000203 (row sums).

Programs

  • Maple
    A158902 := proc(n,k)
        add( A051731(n,j)*A158821(j-1,k-1),j=k..n) ;
    end proc:
    seq(seq(A158902(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Jan 08 2015
  • Mathematica
    m = 12; (* number of rows *)
    T1[n_, k_] := Boole[Mod[n, k] == 0];
    T2[n_, k_] := Which[n == k, 1, k == 1, n-1, True, 0];
    T = Array[T1, {m, m}].Array[T2, {m, m}];
    Table[T[[n, k]], {n, m}, {k, n}] // Flatten (* Jean-François Alcover, Feb 01 2023 *)

Formula

T(n,n) = 1.
T(n,1) = A158901(n).

Extensions

Wrong A-number in definition corrected by Robert Israel, Jan 08 2015

A176890 Triangle T(n,k) read by rows. Signed subsequence of A051731.

Original entry on oeis.org

-1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik and Gary W. Adamson, Apr 28 2010

Keywords

Comments

Let A=A176890*A176890, B=A*A, C=B*B, D=C*C and so on, then the leftmost column in the last matrix converges to the Moebius function A008683.

Examples

			Table begins:
-1,
1,0,
1,0,0,
1,1,0,0,
1,0,0,0,0,
1,1,1,0,0,0,
1,0,0,0,0,0,0,
1,1,0,1,0,0,0,0,
1,0,1,0,0,0,0,0,0,
1,1,0,0,1,0,0,0,0,0,
		

Crossrefs

This is A176918 * the diagonalized mu(n).

Programs

  • Excel
    =if(and(row()=1;column()=1);-1;if(mod(row();column())=0;1;0)-if(and(column()>1;row()=column());1;0))

Formula

T(n,k) = if n=1 and k=1 then -1 elseif n=k then 0 elseif k divides n then 1 else 0.

A127641 A127640 * A051731 as infinite lower triangular matrices.

Original entry on oeis.org

2, 3, 3, 5, 0, 5, 7, 7, 0, 7, 11, 0, 0, 0, 11, 13, 13, 13, 0, 0, 13, 17, 0, 0, 0, 0, 0, 17, 19, 19, 0, 19, 0, 0, 0, 19, 23, 0, 23, 0, 0, 0, 0, 0, 23, 29, 29, 0, 0, 29, 0, 0, 0, 0, 29, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 37, 37, 37, 37, 0, 37, 0, 0, 0, 0, 0, 37, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

A prime transform of A051731.

Examples

			First few rows of the triangle are:
2;
3, 3;
5, 0, 5;
7, 7, 0, 7;
11, 0, 0, 0, 11;
13, 13, 13, 0, 0, 13;
...
		

Crossrefs

Programs

  • Maple
    A127640 := proc(n,m) if m < n then 0; else ithprime(n) ; fi ; end: A051731 := proc(n,k) if n mod k = 0 then 1 ; else 0 ; fi ; end: A127641 := proc(n,m) add( A127640(n,k)*A051731(k,m),k=1..n) ; end: for n from 1 to 15 do for m from 1 to n do printf("%d,",A127641(n,m)) ; od ; od ; # R. J. Mathar, May 19 2007

Extensions

More terms from R. J. Mathar, May 19 2007
Showing 1-10 of 270 results. Next