A101508 Product of binomial matrix and the Mobius matrix A051731.
1, 2, 1, 4, 2, 1, 8, 4, 3, 1, 16, 8, 6, 4, 1, 32, 16, 11, 10, 5, 1, 64, 32, 21, 20, 15, 6, 1, 128, 64, 42, 36, 35, 21, 7, 1, 256, 128, 85, 64, 70, 56, 28, 8, 1, 512, 256, 171, 120, 127, 126, 84, 36, 9, 1, 1024, 512, 342, 240, 220, 252, 210, 120, 45, 10, 1, 2048, 1024, 683, 496, 385, 463, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Rows begin 1; 2,1; 4,2,1; 8,4,3,1; 16,8,6,4,1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
A101508 := proc(n,k) a := 0 ; for i from 0 to n do if modp(i+1,k+1) = 0 then a := a+binomial(n,i) ; end if; end do: return a; end proc: # R. J. Mathar, Mar 22 2013
-
Mathematica
t[n_, k_] := Sum[If[Mod[i + 1, k + 1] == 0, Binomial[n, i], 0], {i, 0, n}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
-
PARI
T(n,k)=sum(i=0,n, if((i+1)%(k+1)==0, binomial(n, i))) \\ M. F. Hasler, Mar 05 2017
Formula
T(n, k) = Sum_{i=0..n} if(mod(i+1, k+1)=0, binomial(n, i), 0).
Rows have g.f. x^k/((1-x)^(k+1)-x^(k+1)).
Comments