cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113999 a(n) = Sum_{ k, k|n } 10^(k-1).

Original entry on oeis.org

1, 11, 101, 1011, 10001, 100111, 1000001, 10001011, 100000101, 1000010011, 10000000001, 100000101111, 1000000000001, 10000001000011, 100000000010101, 1000000010001011, 10000000000000001, 100000000100100111
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

A034729 to base 2. Stacking elements of the sequence gives A113998.

Crossrefs

Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), this sequence (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A113999:= func< n | (&+[10^(d-1): d in Divisors(n)]) >;
    [A113999(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    A113999[n_]:= DivisorSum[n, 10^(#-1) &];
    Table[A113999[n], {n, 40}] (* G. C. Greubel, Jun 26 2024 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,k,10^(k-1)));
    
  • SageMath
    def A113999(n): return sum(10^(k-1) for k in (1..n) if (k).divides(n))
    [A113999(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

G.f.: Sum_{n>0} x^n/(1-10*x^n).
a(n) ~ 10^(n-1). - Vaclav Kotesovec, Jun 05 2021

A081307 a(n) = (n+1)*tau(n) - sigma(n).

Original entry on oeis.org

1, 3, 4, 8, 6, 16, 8, 21, 17, 26, 12, 50, 14, 36, 40, 54, 18, 75, 20, 84, 56, 56, 24, 140, 47, 66, 72, 118, 30, 176, 32, 135, 88, 86, 96, 242, 38, 96, 104, 238, 42, 248, 44, 186, 198, 116, 48, 366, 93, 213, 136, 220
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Old name was: Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
Number of positive integer pairs (s,t) with s <= t <= n, such that s|n. For example, when n = 6, the 16 pairs are (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (6,6). - Wesley Ivan Hurt, Nov 15 2021

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A094471, A113998.

Programs

  • Mathematica
    Table[(n + 1) DivisorSigma[0, n] - DivisorSigma[1, n], {n, 100}] (* Wesley Ivan Hurt, Nov 15 2021 *)
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,sum(l=1,k,1/(1-x^l)),x*O(x^n)),n))
    
  • PARI
    a(n)=sum(j=1, n, sum(k=1, j, n%k==0)) \\ Hugo Pfoertner, Jul 09 2025

Formula

Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
a(n) = Sum_{k=1..n} k*A113998(n,k). - Philippe Deléham, Feb 03 2007

Extensions

Name changed by Wesley Ivan Hurt, Nov 16 2021 using formula from Vladeta Jovovic, Jan 22 2005

A286236 Square array A(n,k) = P(A000010(k), (n+k-1)/k) if k divides (n+k-1), 0 otherwise, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N.

Original entry on oeis.org

1, 1, 2, 3, 0, 4, 3, 0, 2, 7, 10, 0, 0, 0, 11, 3, 0, 0, 5, 4, 16, 21, 0, 0, 0, 0, 0, 22, 10, 0, 0, 0, 5, 0, 7, 29, 21, 0, 0, 0, 0, 0, 8, 0, 37, 10, 0, 0, 0, 0, 14, 0, 0, 11, 46, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 10, 0, 0, 0, 0, 0, 5, 0, 8, 12, 16, 67, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 22, 92, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 17, 0, 106
Offset: 1

Views

Author

Antti Karttunen, May 05 2017

Keywords

Comments

This is transpose of A286237, see comments there.

Examples

			The top left 12 X 12 corner of the array:
   1,  1,  3,  3, 10, 3, 21, 10, 21, 10, 55, 10
   2,  0,  0,  0,  0, 0,  0,  0,  0,  0,  0,  0
   4,  2,  0,  0,  0, 0,  0,  0,  0,  0,  0,  0
   7,  0,  5,  0,  0, 0,  0,  0,  0,  0,  0,  0
  11,  4,  0,  5,  0, 0,  0,  0,  0,  0,  0,  0
  16,  0,  0,  0, 14, 0,  0,  0,  0,  0,  0,  0
  22,  7,  8,  0,  0, 5,  0,  0,  0,  0,  0,  0
  29,  0,  0,  0,  0, 0, 27,  0,  0,  0,  0,  0
  37, 11,  0,  8,  0, 0,  0, 14,  0,  0,  0,  0
  46,  0, 12,  0,  0, 0,  0,  0, 27,  0,  0,  0
  56, 16,  0,  0, 19, 0,  0,  0,  0, 14,  0,  0
  67,  0,  0,  0,  0, 0,  0,  0,  0,  0, 65,  0
The first 15 rows when viewed as a triangle:
   1,
   1, 2,
   3, 0, 4,
   3, 0, 2, 7,
  10, 0, 0, 0, 11,
   3, 0, 0, 5,  4, 16,
  21, 0, 0, 0,  0,  0, 22,
  10, 0, 0, 0,  5,  0,  7, 29,
  21, 0, 0, 0,  0,  0,  8,  0, 37,
  10, 0, 0, 0,  0, 14,  0,  0, 11, 46,
  55, 0, 0, 0,  0,  0,  0,  0,  0,  0, 56,
  10, 0, 0, 0,  0,  0,  5,  0,  8, 12, 16, 67,
  78, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, 79,
  21, 0, 0, 0,  0,  0,  0, 27,  0,  0,  0,  0, 22, 92,
  36, 0, 0, 0,  0,  0,  0,  0,  0,  0, 19,  0, 17,  0, 106
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := ((n + m)^2 - n - 3*m + 2)/2
    t[n_, k_] := If[Mod[n, k] != 0, 0, T[EulerPhi[k], n/k]]
    Table[Reverse[t[n, #] & /@ Range[n]], {n, 1, 20}] (* David Radcliffe, Jun 12 2025 *)
  • Python
    from sympy import totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
    def t(n, k): return 0 if n%k!=0 else T(totient(k), n//k)
    for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # Indranil Ghosh, May 10 2017
  • Scheme
    (define (A286236 n) (A286236bi (A002260 n) (A004736 n)))
    (define (A286236bi row col) (if (not (zero? (modulo (+ row col -1) col))) 0 (let ((a (A000010 col)) (b (/ (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
    ;; Alternatively, with triangular indexing:
    (define (A286236 n) (A286236tr (A002024 n) (A002260 n)))
    (define (A286236tr n k) (A286236bi k (+ 1 (- n k))))
    

Formula

T(n,k) = A113998(n,k) * A286234(n,k).

A067951 a(0) = 1; a(n) = Sum_{1 <= k <= n and k|n} a(n-k).

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 17, 18, 42, 60, 110, 111, 341, 342, 702, 1154, 2240, 2241, 6037, 6038, 15580, 22320, 38012, 38013, 122544, 138125, 261012, 389594, 796173, 796174, 2259345, 2259346, 5439649, 7737007, 13178898, 16234417, 45367492, 45367493
Offset: 0

Views

Author

Naohiro Nomoto, Mar 07 2002

Keywords

Comments

With offset 1, eigensequence of triangle A113998. - Gary W. Adamson, Sep 12 2016
a(n) = a(n-1)+1 iff n is prime. - Robert Israel, Sep 13 2016

Crossrefs

Cf. A113998.

Programs

  • Maple
    f:=proc(n) option remember;
       add(procname(n-k), k=numtheory:-divisors(n))
    end proc:
    f(0):= 1:
    seq(f(n),n=0..50); # Robert Israel, Sep 13 2016
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[a[n - k], {k, Divisors@ n}]; Table[a@ n, {n, 0, 37}] (* Michael De Vlieger, Sep 13 2016 *)
  • PARI
    a(n)=if (n==0, return(1)); my(an = 0); fordiv(n, k, an += a(n-k)); an; \\ Michel Marcus, Jul 14 2013

A286246 Square array A(n,k) = P(A046523(k), (n+k-1)/k) if k divides (n+k-1), 0 otherwise, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N.

Original entry on oeis.org

1, 3, 2, 3, 0, 4, 10, 0, 5, 7, 3, 0, 0, 0, 11, 21, 0, 0, 5, 8, 16, 3, 0, 0, 0, 0, 0, 22, 36, 0, 0, 0, 14, 0, 12, 29, 10, 0, 0, 0, 0, 0, 8, 0, 37, 21, 0, 0, 0, 0, 5, 0, 0, 17, 46, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 78, 0, 0, 0, 0, 0, 27, 0, 19, 12, 23, 67, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, 21, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 30, 92, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 17, 0, 106
Offset: 1

Views

Author

Antti Karttunen, May 06 2017

Keywords

Examples

			The top left 12 X 12 corner of the array:
   1,  3,  3, 10,  3, 21,  3, 36, 10, 21,  3, 78
   2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   4,  5,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
   7,  0,  5,  0,  0,  0,  0,  0,  0,  0,  0,  0
  11,  8,  0, 14,  0,  0,  0,  0,  0,  0,  0,  0
  16,  0,  0,  0,  5,  0,  0,  0,  0,  0,  0,  0
  22, 12,  8,  0,  0, 27,  0,  0,  0,  0,  0,  0
  29,  0,  0,  0,  0,  0,  5,  0,  0,  0,  0,  0
  37, 17,  0, 19,  0,  0,  0, 44,  0,  0,  0,  0
  46,  0, 12,  0,  0,  0,  0,  0, 14,  0,  0,  0
  56, 23,  0,  0,  8,  0,  0,  0,  0, 27,  0,  0
  67,  0,  0,  0,  0,  0,  0,  0,  0,  0,  5,  0
The first fifteen rows of triangle:
   1,
   3, 2,
   3, 0, 4,
  10, 0, 5, 7,
   3, 0, 0, 0, 11,
  21, 0, 0, 5,  8, 16,
   3, 0, 0, 0,  0,  0, 22,
  36, 0, 0, 0, 14,  0, 12, 29,
  10, 0, 0, 0,  0,  0,  8,  0, 37,
  21, 0, 0, 0,  0,  5,  0,  0, 17, 46,
   3, 0, 0, 0,  0,  0,  0,  0,  0,  0, 56,
  78, 0, 0, 0,  0,  0, 27,  0, 19, 12, 23, 67,
   3, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, 79,
  21, 0, 0, 0,  0,  0,  0,  5,  0,  0,  0,  0, 30, 92,
  21, 0, 0, 0,  0,  0,  0,  0,  0,  0,  8,  0, 17,  0, 106
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def A(n, k): return 0 if (n + k - 1)%k!=0 else T(a046523(k), (n + k - 1)//k)
    for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286246 n) (A286246bi (A002260 n) (A004736 n)))
    (define (A286246bi row col) (if (not (zero? (modulo (+ row col -1) col))) 0 (let ((a (A046523 col)) (b (/ (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
    ;; Alternatively, with triangular indexing:
    (define (A286246 n) (A286246tr (A002024 n) (A002260 n)))
    (define (A286246tr n k) (A286246bi k (+ 1 (- n k))))
    

Formula

T(n,k) = A113998(n,k) * A286244(n,k).
Showing 1-5 of 5 results.