cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A034729 a(n) = Sum_{ k, k|n } 2^(k-1).

Original entry on oeis.org

1, 3, 5, 11, 17, 39, 65, 139, 261, 531, 1025, 2095, 4097, 8259, 16405, 32907, 65537, 131367, 262145, 524827, 1048645, 2098179, 4194305, 8390831, 16777233, 33558531, 67109125, 134225995, 268435457, 536887863, 1073741825, 2147516555, 4294968325, 8590000131
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of b_n=1 with c_n = 2^(n-1).
Equals row sums of triangle A143425, & inverse Möbius transform (A051731) of [1, 2, 4, 8, ...]. - Gary W. Adamson, Aug 14 2008
Number of constant multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Sep 16 2018

Examples

			From _Gus Wiseman_, Sep 16 2018: (Start)
The a(4) = 11 constant multiset partitions:
  (1)(1)(1)(1)
    (11)(11)
    (12)(12)
     (1111)
     (1222)
     (1122)
     (1112)
     (1233)
     (1223)
     (1123)
     (1234)
(End)
		

Crossrefs

Cf. A289508.
Sums of the form Sum_{d|n} q^(d-1): this sequence (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A034729:= func< n | (&+[2^(d-1): d in Divisors(n)]) >;
    [A034729(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Maple
    seq(add(2^(k-1),k=numtheory:-divisors(n)), n = 1 .. 100); # Robert Israel, Aug 22 2014
  • Mathematica
    Rest[CoefficientList[Series[Sum[x^k/(1-2*x^k),{k,1,30}],{x,0,30}],x]] (* Vaclav Kotesovec, Sep 08 2014 *)
  • PARI
    A034729(n) = sumdiv(n,k,2^(k-1)) \\ Michael B. Porter, Mar 11 2010
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,2^(m-1)*x^m/(1-x^m +x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
    
  • PARI
    {a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,1/(1 - x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)}
    for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisors
    def A034729(n): return sum(1<<(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 15 2022
    
  • SageMath
    def A034729(n): return sum(2^(k-1) for k in (1..n) if (k).divides(n))
    [A034729(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

G.f.: Sum_{n>0} x^n/(1-2*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) = 1/2 * A055895(n). - Joerg Arndt, Aug 14 2012
G.f.: Sum_{n>=1} 2^(n-1) * x^n / (1 - x^n). - Paul D. Hanna, Aug 21 2014
G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1 - x^d)^(n/d). - Paul D. Hanna, Aug 21 2014
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{k in row n of A215366} A008480(k) * A000005(A289508(k)). - Gus Wiseman, Sep 16 2018
a(n) = Sum_{c is a composition of n} A000005(gcd(c)). - Gus Wiseman, Sep 16 2018

A034730 Dirichlet convolution of b_n=1 with c_n=3^(n-1).

Original entry on oeis.org

1, 4, 10, 31, 82, 256, 730, 2218, 6571, 19768, 59050, 177430, 531442, 1595056, 4783060, 14351125, 43046722, 129146980, 387420490, 1162281262, 3486785140, 10460412256, 31381059610, 94143358444, 282429536563, 847289140888, 2541865834900, 7625599080070, 22876792454962
Offset: 1

Views

Author

Keywords

Crossrefs

Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), this sequence (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

Formula

G.f.: Sum_{n>0} x^n/(1-3*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) ~ 3^(n-2). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{d|n} 3^(d-1). - Seiichi Manyama, Jun 26 2019

A339684 a(n) = Sum_{d|n} 4^(d-1).

Original entry on oeis.org

1, 5, 17, 69, 257, 1045, 4097, 16453, 65553, 262405, 1048577, 4195413, 16777217, 67112965, 268435729, 1073758277, 4294967297, 17179935765, 68719476737, 274878169413, 1099511631889, 4398047559685, 17592186044417, 70368748389461, 281474976710913
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), this sequence (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339684:= func< n | (&+[4^(d-1): d in Divisors(n)]) >;
    [A339684(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[4^(d - 1), {d, Divisors[n]}], {n, 1, 25}]
    nmax = 25; CoefficientList[Series[Sum[x^k/(1 - 4 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 4^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339684(n): return sum(4^(k-1) for k in (1..n) if (k).divides(n))
    [A339684(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 4*x^k).
G.f.: Sum_{k>=1} 4^(k-1) * x^k / (1 - x^k).
a(n) ~ 4^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339685 a(n) = Sum_{d|n} 5^(d-1).

Original entry on oeis.org

1, 6, 26, 131, 626, 3156, 15626, 78256, 390651, 1953756, 9765626, 48831406, 244140626, 1220718756, 6103516276, 30517656381, 152587890626, 762939846906, 3814697265626, 19073488282006, 95367431656276, 476837167968756, 2384185791015626, 11920929003987656
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 5 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), this sequence (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339685:= func< n | (&+[5^(d-1): d in Divisors(n)]) >;
    [A339685(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[5^(d - 1), {d, Divisors[n]}], {n, 1, 24}]
    nmax = 24; CoefficientList[Series[Sum[x^k/(1 - 5 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 5^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339685(n): return sum(5^(k-1) for k in (1..n) if (k).divides(n))
    [A339685(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 5*x^k).
G.f.: Sum_{k>=1} 5^(k-1) * x^k / (1 - x^k).
a(n) ~ 5^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339686 a(n) = Sum_{d|n} 6^(d-1).

Original entry on oeis.org

1, 7, 37, 223, 1297, 7819, 46657, 280159, 1679653, 10078999, 60466177, 362805091, 2176782337, 13060740679, 78364165429, 470185264735, 2821109907457, 16926661132171, 101559956668417, 609359750089711, 3656158440109669, 21936950700844039, 131621703842267137
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 6 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), this sequence (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339686:= func< n | (&+[6^(d-1): d in Divisors(n)]) >;
    [A339686(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[6^(d - 1), {d, Divisors[n]}], {n, 1, 23}]
    nmax = 23; CoefficientList[Series[Sum[x^k/(1 - 6 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 6^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339686(n): return sum(6^(k-1) for k in (1..n) if (k).divides(n))
    [A339686(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 6*x^k).
G.f.: Sum_{k>=1} 6^(k-1) * x^k / (1 - x^k).
a(n) ~ 6^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339687 a(n) = Sum_{d|n} 7^(d-1).

Original entry on oeis.org

1, 8, 50, 351, 2402, 16864, 117650, 823894, 5764851, 40356016, 282475250, 1977343950, 13841287202, 96889128064, 678223075300, 4747562333837, 33232930569602, 232630519768872, 1628413597910450, 11398895225729502, 79792266297729700, 558545864365759264
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 7 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), this sequence (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339687:= func< n | (&+[7^(d-1): d in Divisors(n)]) >;
    [A339687(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[7^(d - 1), {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/(1 - 7 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 7^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339687(n): return sum(7^(k-1) for k in (1..n) if (k).divides(n))
    [A339687(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 7*x^k).
G.f.: Sum_{k>=1} 7^(k-1) * x^k / (1 - x^k).
a(n) ~ 7^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339688 a(n) = Sum_{d|n} 8^(d-1).

Original entry on oeis.org

1, 9, 65, 521, 4097, 32841, 262145, 2097673, 16777281, 134221833, 1073741825, 8589967945, 68719476737, 549756076041, 4398046515265, 35184374186505, 281474976710657, 2251799830495305, 18014398509481985, 144115188210078217, 1152921504607109185
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 8 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), this sequence (q=8), A339689 (q=9).

Programs

  • Magma
    A339688:= func< n | (&+[8^(d-1): d in Divisors(n)]) >;
    [A339688(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[8^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 8 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 8^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339688(n): return sum(8^(k-1) for k in (1..n) if (k).divides(n))
    [A339688(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 8*x^k).
G.f.: Sum_{k>=1} 8^(k-1) * x^k / (1 - x^k).
a(n) ~ 8^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339689 a(n) = Sum_{d|n} 9^(d-1).

Original entry on oeis.org

1, 10, 82, 739, 6562, 59140, 531442, 4783708, 43046803, 387427060, 3486784402, 31381119478, 282429536482, 2541866359780, 22876792461604, 205891136878357, 1853020188851842, 16677181742772430, 150094635296999122, 1350851718060419878, 12157665459057460324
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 9 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), this sequence (q=9).

Programs

  • Magma
    A339689:= func< n | (&+[9^(d-1): d in Divisors(n)]) >;
    [A339689(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[9^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 9 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 9^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339689(n): return sum(9^(k-1) for k in (1..n) if (k).divides(n))
    [A339689(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 9*x^k).
G.f.: Sum_{k>=1} 9^(k-1) * x^k / (1 - x^k).
a(n) ~ 9^(n-1). - Vaclav Kotesovec, Jun 05 2021

A308813 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) is Sum_{d|n} k^(d-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 3, 1, 1, 5, 10, 11, 2, 1, 1, 6, 17, 31, 17, 4, 1, 1, 7, 26, 69, 82, 39, 2, 1, 1, 8, 37, 131, 257, 256, 65, 4, 1, 1, 9, 50, 223, 626, 1045, 730, 139, 3, 1, 1, 10, 65, 351, 1297, 3156, 4097, 2218, 261, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2019

Keywords

Examples

			Square array, A(n,k), begins:
  1, 1,  1,   1,    1,     1,     1, ...
  1, 2,  3,   4,    5,     6,     7, ...
  1, 2,  5,  10,   17,    26,    37, ...
  1, 3, 11,  31,   69,   131,   223, ...
  1, 2, 17,  82,  257,   626,  1297, ...
  1, 4, 39, 256, 1045,  3156,  7819, ...
  1, 2, 65, 730, 4097, 15626, 46657, ...
Antidiagonal triangle, T(n,k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  2,   1;
  1,  4,  5,   3,    1;
  1,  5, 10,  11,    2,    1;
  1,  6, 17,  31,   17,    4,    1;
  1,  7, 26,  69,   82,   39,    2,    1;
  1,  8, 37, 131,  257,  256,   65,    4,   1;
  1,  9, 50, 223,  626, 1045,  730,  139,   3,   1;
  1, 10, 65, 351, 1297, 3156, 4097, 2218, 261,   4,   1;
		

Crossrefs

Row n=1..3 give A000012, A000027(k+1), A002522.
A(n,n) gives A308814.

Programs

  • Magma
    A:= func< n,k | (&+[k^(d-1): d in Divisors(n)]) >;
    A308813:= func< n,k | A(k+1,n-k-1) >;
    [A308813(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    A[n_, k_] := DivisorSum[n, If[k == # - 1 == 0, 1, k^(# - 1)] &];
    Table[A[k + 1, n - k - 1], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, May 07 2021 *)
  • SageMath
    def A(n,k): return sum(k^(j-1) for j in (1..n) if (j).divides(n))
    def A308813(n,k): return A(k+1,n-k-1)
    flatten([[A308813(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 26 2024

Formula

G.f. of column k: Sum_{j>=1} x^j/(1 - k*x^j).
T(n, k) = Sum_{d|(k+1)} (n-k-1)^(d-1), with T(n, n) = 1. - G. C. Greubel, Jun 26 2024

A113998 Reverse of triangle A051731.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Row sums are A000005. Diagonal sums are A001227 (?). Row k corresponds to A113999(k).

Examples

			Triangle begins
1;
1,1;
1,0,1;
1,0,1,1;
1,0,0,0,1;
1,0,0,1,1,1;
1,0,0,0,0,0,1;
1,0,0,0,1,0,1,1;
		

Formula

Sum_{k, 1<=k<=n} k*T(n,k)=A081307(n) - Philippe Deléham, Feb 03 2007
Showing 1-10 of 10 results.