cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A339685 a(n) = Sum_{d|n} 5^(d-1).

Original entry on oeis.org

1, 6, 26, 131, 626, 3156, 15626, 78256, 390651, 1953756, 9765626, 48831406, 244140626, 1220718756, 6103516276, 30517656381, 152587890626, 762939846906, 3814697265626, 19073488282006, 95367431656276, 476837167968756, 2384185791015626, 11920929003987656
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 5 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), this sequence (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339685:= func< n | (&+[5^(d-1): d in Divisors(n)]) >;
    [A339685(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[5^(d - 1), {d, Divisors[n]}], {n, 1, 24}]
    nmax = 24; CoefficientList[Series[Sum[x^k/(1 - 5 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 5^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339685(n): return sum(5^(k-1) for k in (1..n) if (k).divides(n))
    [A339685(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 5*x^k).
G.f.: Sum_{k>=1} 5^(k-1) * x^k / (1 - x^k).
a(n) ~ 5^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339686 a(n) = Sum_{d|n} 6^(d-1).

Original entry on oeis.org

1, 7, 37, 223, 1297, 7819, 46657, 280159, 1679653, 10078999, 60466177, 362805091, 2176782337, 13060740679, 78364165429, 470185264735, 2821109907457, 16926661132171, 101559956668417, 609359750089711, 3656158440109669, 21936950700844039, 131621703842267137
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 6 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), this sequence (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339686:= func< n | (&+[6^(d-1): d in Divisors(n)]) >;
    [A339686(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[6^(d - 1), {d, Divisors[n]}], {n, 1, 23}]
    nmax = 23; CoefficientList[Series[Sum[x^k/(1 - 6 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 6^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339686(n): return sum(6^(k-1) for k in (1..n) if (k).divides(n))
    [A339686(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 6*x^k).
G.f.: Sum_{k>=1} 6^(k-1) * x^k / (1 - x^k).
a(n) ~ 6^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339687 a(n) = Sum_{d|n} 7^(d-1).

Original entry on oeis.org

1, 8, 50, 351, 2402, 16864, 117650, 823894, 5764851, 40356016, 282475250, 1977343950, 13841287202, 96889128064, 678223075300, 4747562333837, 33232930569602, 232630519768872, 1628413597910450, 11398895225729502, 79792266297729700, 558545864365759264
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 7 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), this sequence (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339687:= func< n | (&+[7^(d-1): d in Divisors(n)]) >;
    [A339687(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[7^(d - 1), {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/(1 - 7 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 7^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339687(n): return sum(7^(k-1) for k in (1..n) if (k).divides(n))
    [A339687(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 7*x^k).
G.f.: Sum_{k>=1} 7^(k-1) * x^k / (1 - x^k).
a(n) ~ 7^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339688 a(n) = Sum_{d|n} 8^(d-1).

Original entry on oeis.org

1, 9, 65, 521, 4097, 32841, 262145, 2097673, 16777281, 134221833, 1073741825, 8589967945, 68719476737, 549756076041, 4398046515265, 35184374186505, 281474976710657, 2251799830495305, 18014398509481985, 144115188210078217, 1152921504607109185
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 8 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), this sequence (q=8), A339689 (q=9).

Programs

  • Magma
    A339688:= func< n | (&+[8^(d-1): d in Divisors(n)]) >;
    [A339688(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[8^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 8 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 8^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339688(n): return sum(8^(k-1) for k in (1..n) if (k).divides(n))
    [A339688(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 8*x^k).
G.f.: Sum_{k>=1} 8^(k-1) * x^k / (1 - x^k).
a(n) ~ 8^(n-1). - Vaclav Kotesovec, Jun 05 2021

A339689 a(n) = Sum_{d|n} 9^(d-1).

Original entry on oeis.org

1, 10, 82, 739, 6562, 59140, 531442, 4783708, 43046803, 387427060, 3486784402, 31381119478, 282429536482, 2541866359780, 22876792461604, 205891136878357, 1853020188851842, 16677181742772430, 150094635296999122, 1350851718060419878, 12157665459057460324
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 9 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), this sequence (q=9).

Programs

  • Magma
    A339689:= func< n | (&+[9^(d-1): d in Divisors(n)]) >;
    [A339689(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[9^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 9 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 9^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339689(n): return sum(9^(k-1) for k in (1..n) if (k).divides(n))
    [A339689(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 9*x^k).
G.f.: Sum_{k>=1} 9^(k-1) * x^k / (1 - x^k).
a(n) ~ 9^(n-1). - Vaclav Kotesovec, Jun 05 2021

A308814 a(n) = Sum_{d|n} n^(d-1).

Original entry on oeis.org

1, 3, 10, 69, 626, 7819, 117650, 2097673, 43046803, 1000010011, 25937424602, 743008621405, 23298085122482, 793714780783695, 29192926025441476, 1152921504875286545, 48661191875666868482, 2185911559749718382455, 104127350297911241532842, 5242880000000512000168021
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[n^(Divisors[n]-1)],{n,20}] (* Harvey P. Dale, Aug 08 2019 *)
  • PARI
    {a(n) = sumdiv(n, d, n^(d-1))}

Formula

a(n) = A308813(n,n).
a(n) = A066108(n)/n.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 05 2021

A344821 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{j=1..n} floor(n/j) * k^(j-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 9, 8, 5, 1, 6, 15, 20, 10, 6, 1, 7, 23, 46, 37, 14, 7, 1, 8, 33, 92, 128, 76, 16, 8, 1, 9, 45, 164, 349, 384, 141, 20, 9, 1, 10, 59, 268, 790, 1394, 1114, 280, 23, 10, 1, 11, 75, 410, 1565, 3946, 5491, 3332, 541, 27, 11
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Examples

			Square array, A(n, k), begins:
  1,  1,  1,   1,    1,    1,    1, ...
  2,  3,  4,   5,    6,    7,    8, ...
  3,  5,  9,  15,   23,   33,   45, ...
  4,  8, 20,  46,   92,  164,  268, ...
  5, 10, 37, 128,  349,  790, 1565, ...
  6, 14, 76, 384, 1394, 3946, 9384, ...
Antidiagonal triangle, T(n, k), begins:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  5,   4;
  1,  5,  9,   8,   5;
  1,  6, 15,  20,  10,   6;
  1,  7, 23,  46,  37,  14,   7;
  1,  8, 33,  92, 128,  76,  16,  8;
  1,  9, 45, 164, 349, 384, 141, 20,  9;
		

Crossrefs

Columns k=0..5 give A000027, A006218, A268235, A344814, A344815, A344816.
A(n,n) gives A332533.

Programs

  • Magma
    A:= func< n,k | k eq n select n else (&+[Floor(n/j)*k^(j-1): j in [1..n]]) >;
    A344821:= func< n,k | A(k+1, n-k-1) >;
    [A344821(n,k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jun 27 2024
    
  • Mathematica
    A[n_, k_] := Sum[If[k == 0 && j == 1, 1, k^(j - 1)] * Quotient[n, j], {j, 1, n}]; Table[A[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 29 2021 *)
  • PARI
    A(n, k) = sum(j=1, n, n\j*k^(j-1));
    
  • PARI
    A(n, k) = sum(j=1, n, sumdiv(j, d, k^(d-1)));
    
  • SageMath
    def A(n,k): return n if k==n else sum((n//j)*k^(j-1) for j in range(1,n+1))
    def A344821(n,k): return A(k+1, n-k-1)
    flatten([[A344821(n,k) for k in range(n)] for n in range(1,13)]) # G. C. Greubel, Jun 27 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - k*x^j).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} k^(j-1) * x^j/(1 - x^j).
A(n, k) = Sum_{j=1..n} Sum_{d|j} k^(d - 1).
T(n, k) = Sum_{j=1..k+1} floor((k+1)/j) * (n-k-1)^(j-1), for n >= 1, 0 <= k <= n-1 (antidiagonal triangle). - G. C. Greubel, Jun 27 2024
Showing 1-7 of 7 results.