cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A113998 Reverse of triangle A051731.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Row sums are A000005. Diagonal sums are A001227 (?). Row k corresponds to A113999(k).

Examples

			Triangle begins
1;
1,1;
1,0,1;
1,0,1,1;
1,0,0,0,1;
1,0,0,1,1,1;
1,0,0,0,0,0,1;
1,0,0,0,1,0,1,1;
		

Formula

Sum_{k, 1<=k<=n} k*T(n,k)=A081307(n) - Philippe Deléham, Feb 03 2007

A243987 Triangle read by rows: T(n, k) is the number of divisors of n that are less than or equal to k for 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Offset: 1

Views

Author

Dennis P. Walsh, Jun 16 2014

Keywords

Comments

This triangular sequence T(n,k) generalizes sequence A000005, the number of divisors of n; in particular, A000005(n) = T(n,n).
Also, for prime p, T(p,k) = 1 when k < p and T(p,p) = 2.

Examples

			T(6,4)=3 since there are 3 divisors of 6 that are less than or equal to 4, namely, 1, 2 and 3.
T(n,k) as a triangle, n=1..15:
1,
1, 2,
1, 1, 2,
1, 2, 2, 3,
1, 1, 1, 1, 2,
1, 2, 3, 3, 3, 4,
1, 1, 1, 1, 1, 1, 2,
1, 2, 2, 3, 3, 3, 3, 4,
1, 1, 2, 2, 2, 2, 2, 2, 3,
1, 2, 2, 2, 3, 3, 3, 3, 3, 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4,
1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
		

Crossrefs

Cf. A000005 (diagonal), A000012 (first column), A081307 (row sums), A027750 (divisors of n).

Programs

  • Haskell
    a243987 n k = a243987_tabl !! (n-1) !! (k-1)
    a243987_row n = a243987_tabl !! (n-1)
    a243987_tabl = map (scanl1 (+)) a051731_tabl
    -- Reinhard Zumkeller, Apr 22 2015
  • Maple
    T:=(n,k)->1/n!*eval(diff(sum(x^j/(1-x^j),j=1..k),x$n),x=0):
    seq(seq(T(n,k), k=1..n), n=1..10);
    # Alternative:
    IversonBrackets := expr -> subs(true=1, false=0, evalb(expr)):
    T := (n, k) -> add(IversonBrackets(irem(n, j) = 0), j = 1..k):
    for n from 1 to 19 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Jan 02 2021
  • PARI
    T(n, k) = sumdiv(n, d, d<=k); \\ Michel Marcus, Jun 17 2014
    

Formula

T(n,1) = 1; T(n,n) = A000005(n).
T(n,k) = coefficient of the x^n term in the expansion of Sum(x^j/(1-x^j), j=1..k).
T(n,k) = Sum_{j=1..k} A051731(n,j). - Reinhard Zumkeller, Apr 22 2015

A130026 Triangle (n,k) by columns, arithmetic sequences interspersed with k zeros.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 4, 3, 0, 1, 5, 0, 0, 0, 1, 6, 5, 4, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 8, 7, 0, 5, 0, 0, 0, 1, 9, 0, 7, 0, 0, 0, 0, 0, 1, 10, 9, 0, 0, 6, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, May 02 2007

Keywords

Comments

Row sums = A081307: (1, 3, 4, 8, 6, 16, 8, 21, 17, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 0, 1;
  4, 3, 0, 1;
  5, 0, 0, 0, 1;
  6, 5, 4, 0, 0, 1;
  7, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Arithmetic sequences by columns, (1,2,3,...); (1,3,5,...); (1,4,7,...); interspersed with k zeros, k=0,1,2,...

A343803 a(n) = Sum_{k=1..n} k * (number of divisors of n <= k).

Original entry on oeis.org

1, 5, 9, 23, 20, 65, 35, 109, 96, 164, 77, 377, 104, 307, 362, 525, 170, 818, 209, 1008, 690, 725, 299, 2005, 665, 1000, 1122, 1939, 464, 3106, 527, 2517, 1658, 1682, 1894, 5084, 740, 2089, 2298, 5500, 902, 6022, 989, 4701, 5066, 3035, 1175, 10117, 2478, 6069, 3890, 6532, 1484
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 29 2021

Keywords

Comments

If n is prime, then a(n) = n*(n+3)/2.

Examples

			a(4) = 1*(1) + 2*(2) + 3*(2) + 4*(3) = 23, i.e.,
  (1 times the number of divisors of 4 that are less than or equal to 1)
+ (2 times the number of divisors of 4 that are less than or equal to 2)
+ (3 times the number of divisors of 4 that are less than or equal to 3)
+ (4 times the number of divisors of 4 that are less than or equal to 4).
		

Crossrefs

Cf. A081307.

Programs

  • Mathematica
    Table[Sum[Sum[k (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 60}]
  • PARI
    a(n) = my(d=divisors(n)); sum(k=1, n, k*#select(x->(x<=k), d)); \\ Michel Marcus, Apr 30 2021

Formula

a(n) = Sum_{k=1..n} Sum_{i=1..k} k * (1 - ceiling(n/i) + floor(n/i)).
Showing 1-4 of 4 results.