cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A006951 Number of conjugacy classes in GL(n,2).

Original entry on oeis.org

1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0

Views

Author

Keywords

Comments

Unlabeled permutations of sets. - Christian G. Bower, Jan 29 2004
From Joerg Arndt, Jan 02 2013: (Start)
Set q=2 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L], see the Macdonald reference.
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
Sequences where q is not a prime power are:
q=6: A221578, q=10: A221579, q=12: A221580,
q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
(End)
From Gus Wiseman, Jan 21 2019: (Start)
Also the number of ways to split an integer partition of n into consecutive constant subsequences. For example, the a(5) = 27 ways (subsequences shown as rows) are:
5 11111
.
4 3 3 22 2 1111 1 111 11
1 2 11 1 111 1 1111 11 111
.
3 2 2 2 111 1 1 11 11 1
1 2 11 1 1 111 1 11 1 11
1 1 1 11 1 1 111 1 11 11
.
2 11 1 1 1
1 1 11 1 1
1 1 1 11 1
1 1 1 1 11
.
1
1
1
1
1
(End)

Examples

			For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- _Joerg Arndt_, Jan 02 2013
		

References

  • W. D. Smith, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    /* The program does not work for n>19: */
    [1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
    
  • Maple
    with(numtheory):
    b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
    a:= proc(n) option remember; `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
  • PARI
    N=66; x='x+O('x^N);
    gf=prod(n=1,N, (1-x^n)/(1-2*x^n)  );
    v=Vec(gf)
    /* Joerg Arndt, Jan 02 2013 */

Formula

G.f.: Product_{n>=1} (1-x^n)/(1-2*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
Euler transform of A008965. - Christian G. Bower, Jan 29 2004
a(n) ~ 2^n - (1+sqrt(2) + (-1)^n*(1-sqrt(2))) * 2^(n/2-1). - Vaclav Kotesovec, Nov 21 2015
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(2^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018

Extensions

More terms from Christian G. Bower, Jan 29 2004

A332280 Number of integer partitions of n with unimodal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2020

Keywords

Comments

First differs from A000041 at a(10) = 41, A000041(10) = 42.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 41 partitions (A = 10) are:
  (A)     (61111)   (4321)     (3211111)
  (91)    (55)      (43111)    (31111111)
  (82)    (541)     (4222)     (22222)
  (811)   (532)     (42211)    (222211)
  (73)    (5311)    (421111)   (2221111)
  (721)   (5221)    (4111111)  (22111111)
  (7111)  (52111)   (3331)     (211111111)
  (64)    (511111)  (3322)     (1111111111)
  (631)   (442)     (331111)
  (622)   (4411)    (32221)
  (6211)  (433)     (322111)
Missing from this list is only (33211).
		

Crossrefs

The complement is counted by A332281.
Heinz numbers of these partitions are the complement of A332282.
Taking 0-appended first-differences instead of run-lengths gives A332283.
The normal case is A332577.
The opposite version is A332638.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers whose unsorted prime signature is unimodal are A332288.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332281 Number of integer partitions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 1 through a(15) = 10 partitions:
  (33211)  (332111)  (44211)    (44311)     (55211)      (44322)
                     (3321111)  (333211)    (433211)     (55311)
                                (442111)    (443111)     (443211)
                                (33211111)  (3332111)    (533211)
                                            (4421111)    (552111)
                                            (332111111)  (4332111)
                                                         (4431111)
                                                         (33321111)
                                                         (44211111)
                                                         (3321111111)
		

Crossrefs

The complement is counted by A332280.
The Heinz numbers of these partitions are A332282.
The opposite version is A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> combinat[numbpart](n)-b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := PartitionsP[n] - b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332639 Number of integer partitions of n whose negated run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 10 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)    (5332)
                  (32221)  (6221)    (5331)    (6331)
                           (42221)   (7221)    (8221)
                           (322211)  (43221)   (43321)
                                     (52221)   (53221)
                                     (322221)  (62221)
                                     (422211)  (332221)
                                               (422221)
                                               (522211)
                                               (3222211)
		

Crossrefs

The version for normal sequences is A328509.
The non-negated complement is A332280.
The non-negated version is A332281.
The complement is counted by A332638.
The case that is not unimodal either is A332640.
The Heinz numbers of these partitions are A332642.
The generalization to run-lengths of compositions is A332727.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A100882 Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 21, 29, 29, 40, 47, 56, 62, 83, 86, 111, 124, 146, 166, 207, 217, 267, 300, 352, 389, 471, 505, 604, 668, 772, 860, 1015, 1085, 1279, 1419, 1622, 1780, 2072, 2242, 2595, 2858, 3231, 3563, 4092, 4421, 5057, 5557, 6250
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(4) = 4 because in each of the partitions 4, 3+1, 2+2, 1+1+1+1, the frequencies of the summands is nonincreasing as the summands decrease. The partition 2+1+1 is not counted because 2 is used once, but 1 is used twice.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=1 then `if`(n<=t, 1, 0)
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=1..min(t, floor(n/i)))
          fi
        end:
    a:= n-> b(n, n, n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n == 0, 1, i == 1, If[n <= t, 1, 0], i == 0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t, Floor[n/i]]}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 21 2011

A332638 Number of integer partitions of n whose negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 52, 70, 91, 118, 151, 195, 246, 310, 388, 484, 600, 743, 909, 1113, 1359, 1650, 1996, 2409, 2895, 3471, 4156, 4947, 5885, 6985, 8260, 9751, 11503, 13511, 15857, 18559, 21705, 25304, 29499, 34259, 39785, 46101, 53360, 61594
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 21 partitions:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The non-negated version is A332280.
The complement is counted by A332639.
The Heinz numbers of partitions not in this class are A332642.
The case of 0-appended differences (instead of run-lengths) is A332728.
Unimodal compositions are A001523.
Partitions whose run lengths are not unimodal are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A100471 Number of integer partitions of n whose sequence of frequencies is strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 18, 20, 27, 32, 40, 44, 60, 67, 82, 93, 114, 129, 161, 175, 209, 239, 285, 315, 372, 416, 484, 545, 631, 698, 811, 890, 1027, 1146, 1304, 1437, 1631, 1805, 2042, 2252, 2539, 2785, 3143, 3439, 3846, 4226, 4722, 5159
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(4) = 4 because of the 5 unrestricted partitions of 4, only one, 3+1 uses each of its summands just once and 1,1 is not an increasing sequence.
From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(8) = 11 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (4111)     (611)
                                     (3111)    (22111)    (2222)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Cf. A000219, A000837 (frequencies are relatively prime), A047966 (frequencies are equal), A098859 (frequencies are distinct), A100881, A100882, A100883, A304686 (Heinz numbers of these partitions).

Programs

  • Haskell
    a100471 n = p 0 (n + 1) 1 n where
       p m m' k x | x == 0    = if m < m' || m == 0 then 1 else 0
                  | x < k     = 0
                  | m == 0    = p 1 m' k (x - k) + p 0 m' (k + 1) x
                  | otherwise = p (m + 1) m' k (x - k) +
                                if m < m' then p 0 m (k + 1) x else 0
    -- Reinhard Zumkeller, Dec 27 2012
  • Maple
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=1 then `if`(n>t, 1, 0)
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=t+1..floor(n/i))
          fi
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==1, If[n>t, 1, 0], i == 0, 0 , True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t+1, Floor[n/i]}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ@*Split]],{n,20}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

Corrected and extended by Vladeta Jovovic, Nov 24 2004
Name edited by Gus Wiseman, Jan 23 2019

A323583 Number of ways to split an integer partition of n into consecutive subsequences.

Original entry on oeis.org

1, 1, 3, 7, 17, 37, 83, 175, 373, 773, 1603, 3275, 6693, 13557, 27447, 55315, 111397, 223769, 449287, 900795, 1805465, 3615929, 7240327, 14491623, 29001625, 58027017, 116093259, 232237583, 464558201, 929224589, 1858623819, 3717475031, 7435314013, 14871103069
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2019

Keywords

Examples

			The a(3) = 7 ways to split an integer partition of 3 into consecutive subsequences are (3), (21), (2)(1), (111), (11)(1), (1)(11), (1)(1)(1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> ceil(b(n$2)):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Sum[2^(Length[ptn]-1),{ptn,IntegerPartitions[n]}],{n,40}]
    (* Second program: *)
    (1/2) CoefficientList[1 - 1/QPochhammer[2, x] + O[x]^100 , x] (* Jean-François Alcover, Jan 02 2022, after Vladimir Reshetnikov in A070933 *)

Formula

a(n) = A070933(n)/2.
O.g.f.: (1/2)*Product_{n >= 1} 1/(1 - 2*x^n).
G.f.: 1 + Sum_{k>=1} 2^(k - 1) * x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A100881 Number of partitions of n in which the sequence of frequencies of the summands is decreasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 8, 9, 13, 10, 13, 15, 16, 18, 21, 17, 24, 28, 26, 26, 36, 32, 38, 42, 40, 46, 52, 48, 63, 63, 59, 63, 85, 77, 81, 92, 89, 102, 116, 98, 122, 134, 130, 140, 157, 145, 165, 182, 190, 191, 207, 195, 235, 259, 232, 252, 293, 279
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(7) = 4 because in each of the four partitions [7], [3,3,1], [2,2,2,1], [1,1,1,1,1,1,1] the frequency with which a summand is used decreases as the summand decreases.
		

Crossrefs

Programs

  • Haskell
    a100881 = p 0 0 1 where
       p m m' k x | x == 0    = if m > m' || m == 0 then 1 else 0
                  | x < k     = 0
                  | m == 0    = p 1 m' k (x - k) + p 0 m' (k + 1) x
                  | otherwise = p (m + 1) m' k (x - k) +
                                if m > m' then p 0 m (k + 1) x else 0
    -- Reinhard Zumkeller, Dec 27 2012
  • Maple
    b:= proc(n, i, t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=1..min(t-1, floor(n/i)))
          fi
        end:
    a:= n-> b(n, n, n+1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t-1, Floor[n/i]]}]]; a[n_] := b[n, n, n+1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 21 2011

A332833 Number of compositions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 8, 27, 75, 185, 441, 1025, 2276, 4985, 10753, 22863, 48142, 100583, 208663, 430563, 884407, 1809546, 3690632, 7506774, 15233198, 30851271, 62377004, 125934437, 253936064, 511491634, 1029318958, 2069728850, 4158873540, 8351730223, 16762945432
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 3 and a(7) = 8 compositions:
  (1221)   (2113)
  (2112)   (3112)
  (11211)  (11311)
           (12112)
           (21112)
           (21121)
           (111211)
           (112111)
		

Crossrefs

The case of partitions is A332641.
The version for unsorted prime signature is A332831.
The version for the compositions themselves (not run-lengths) is A332834.
The complement is counted by A332835.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are not unimodal are A332727.
Partitions with weakly increasing or weakly decreasing run-lengths: A332745.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - 2 * A332836(n) + A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020
Showing 1-10 of 57 results. Next