A006951
Number of conjugacy classes in GL(n,2).
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- _Joerg Arndt_, Jan 02 2013
- W. D. Smith, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 161
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
- N. J. A. Sloane, Transforms
-
/* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
-
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
-
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A006952
Number of conjugacy classes in GL(n,3).
Original entry on oeis.org
1, 2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944, 176808, 531128, 1593288, 4781952, 14345792, 43043622, 129130584, 387411144, 1162232520, 3486755688, 10460266224, 31380972784, 94142915640, 282429275616, 847287817866, 2541865038832, 7625595108432
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. D. Smith, personal communication.
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 162
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
-
/* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
-
with(numtheory):
b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-3*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A049314
The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=4.
Original entry on oeis.org
1, 3, 15, 60, 252, 1005, 4080, 16305, 65460, 261828, 1048260, 4192980, 16775955, 67103520, 268430160, 1073720415, 4294945932, 17179782540, 68719391100, 274877559420, 1099511281260, 4398045120300, 17592184654365, 70368738597600, 281474971147680
Offset: 0
A049316
The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=7.
Original entry on oeis.org
1, 6, 48, 336, 2394, 16752, 117600, 823152, 5764416, 40350870, 282472512, 1977307248, 13841268048, 96888873648, 678222936384, 4747560552384, 33232929612330, 232630507267536, 1628413591207536, 11398895138319024, 79792266250574640, 558545863753891104
Offset: 0
- V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
-
/* The program does not work for n>8: */ [1] cat [NumberOfClasses(GL(n,7)): n in [1..8]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*7^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*7^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
-
x='x+O('x^30); Vec(prod(n=1, 30, (1-x^n)/(1-7*x^n))) \\ Altug Alkan, Sep 27 2018
A182603
Number of conjugacy classes in GL(n,8).
Original entry on oeis.org
1, 7, 63, 504, 4088, 32697, 262080, 2096577, 16776648, 134213128, 1073737224, 8589897288, 68719439943, 549755515008, 4398046212672, 35184369697407, 281474974319672, 2251799794521144, 18014398490350584, 144115187922510840, 1152921504453534648
Offset: 0
-
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 8)): n in [1..6]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*8^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*8^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
A182604
Number of conjugacy classes in GL(n,9).
Original entry on oeis.org
1, 8, 80, 720, 6552, 58960, 531360, 4782160, 43045920, 387413208, 3486777120, 31380993360, 282429470960, 2541865231440, 22876791858720, 205891126722080, 1853020183479912, 16677181651254480, 150094635248646000, 1350851717237225040, 12157665458621220720
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 9)): n in [1..6]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*9^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*9^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-9*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182605
Number of conjugacy classes in GL(n,11).
Original entry on oeis.org
1, 10, 120, 1320, 14630, 160920, 1771440, 19485720, 214357440, 2357931730, 25937408640, 285311493720, 3138428201160, 34522710196920, 379749831637440, 4177248147997440, 45949729842155150, 505447028263532520, 5559917313256631160, 61159090445821012920
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
N := 300; R := PowerSeriesRing(Integers(), N);
Eltseq( &*[ (1-x^k)/(1-11*x^k) : k in [1..N] ] ); // Volker Gebhardt, Dec 07 2020
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*11^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*11^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-11*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182606
Number of conjugacy classes in GL(n,13).
Original entry on oeis.org
1, 12, 168, 2184, 28548, 371112, 4826640, 62746152, 815728368, 10604468628, 137858461104, 1792159992168, 23298084722808, 302875101365928, 3937376380474992, 51185892946146672, 665416609115237772, 8650415918497693704, 112455406951074120024
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>5: */ [1] cat [NumberOfClasses(GL(n, 13)): n in [1..5]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*13^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*13^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-13*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182607
Number of conjugacy classes in GL(n,16).
Original entry on oeis.org
1, 15, 255, 4080, 65520, 1048305, 16776960, 268431105, 4294962960, 68719407120, 1099511558160, 17592184926480, 281474975596815, 4503599609479680, 72057594020040960, 1152921504320590335, 18446744073423298800, 295147905174771671280, 4722366482865065107440
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 16)) : n in [1..6]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*16^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*16^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-16*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182608
Number of conjugacy classes in GL(n,17).
Original entry on oeis.org
1, 16, 288, 4896, 83504, 1419552, 24137280, 410333472, 6975752256, 118587788080, 2015993812032, 34271894799648, 582622235726688, 9904578007265568, 168377826533765184, 2862423051073925184, 48661191875230982480, 827240261878925204256, 14063084452060314850656
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 17)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*17^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*17^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-17*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
Showing 1-10 of 23 results.
Next
Comments