A006951
Number of conjugacy classes in GL(n,2).
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- _Joerg Arndt_, Jan 02 2013
- W. D. Smith, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 161
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
- N. J. A. Sloane, Transforms
-
/* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
-
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
-
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
A182604
Number of conjugacy classes in GL(n,9).
Original entry on oeis.org
1, 8, 80, 720, 6552, 58960, 531360, 4782160, 43045920, 387413208, 3486777120, 31380993360, 282429470960, 2541865231440, 22876791858720, 205891126722080, 1853020183479912, 16677181651254480, 150094635248646000, 1350851717237225040, 12157665458621220720
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 9)): n in [1..6]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*9^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*9^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-9*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182605
Number of conjugacy classes in GL(n,11).
Original entry on oeis.org
1, 10, 120, 1320, 14630, 160920, 1771440, 19485720, 214357440, 2357931730, 25937408640, 285311493720, 3138428201160, 34522710196920, 379749831637440, 4177248147997440, 45949729842155150, 505447028263532520, 5559917313256631160, 61159090445821012920
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
N := 300; R := PowerSeriesRing(Integers(), N);
Eltseq( &*[ (1-x^k)/(1-11*x^k) : k in [1..N] ] ); // Volker Gebhardt, Dec 07 2020
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*11^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*11^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-11*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182606
Number of conjugacy classes in GL(n,13).
Original entry on oeis.org
1, 12, 168, 2184, 28548, 371112, 4826640, 62746152, 815728368, 10604468628, 137858461104, 1792159992168, 23298084722808, 302875101365928, 3937376380474992, 51185892946146672, 665416609115237772, 8650415918497693704, 112455406951074120024
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182607,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>5: */ [1] cat [NumberOfClasses(GL(n, 13)): n in [1..5]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*13^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*13^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-13*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182607
Number of conjugacy classes in GL(n,16).
Original entry on oeis.org
1, 15, 255, 4080, 65520, 1048305, 16776960, 268431105, 4294962960, 68719407120, 1099511558160, 17592184926480, 281474975596815, 4503599609479680, 72057594020040960, 1152921504320590335, 18446744073423298800, 295147905174771671280, 4722366482865065107440
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182608,
A182609,
A182610,
A182611,
A182612.
-
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 16)) : n in [1..6]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*16^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*16^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-16*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182609
Number of conjugacy classes in GL(n,19).
Original entry on oeis.org
1, 18, 360, 6840, 130302, 2475720, 47045520, 893864520, 16983555840, 322687560618, 6131066120640, 116490256285320, 2213314916460120, 42052983412605480, 799006685733239040, 15181127028931412160, 288441413566677788022, 5480386857766875373560
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182610,
A182611,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 19)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*19^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*19^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-19*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182612
Number of conjugacy classes in GL(n,27).
Original entry on oeis.org
1, 26, 728, 19656, 531414, 14348152, 387419760, 10460332792, 282429516096, 7625596933890, 205891131543552, 5559060551656248, 150094635282119528, 4052555152616676888, 109418989131110078784, 2954312706539971597184, 79766443076861647780830
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182611.
-
/* The program does not work for n>4: */ [1] cat [ NumberOfClasses(GL(n, 27)) : n in [1..4] ];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*27^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*27^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-27*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182610
Number of conjugacy classes in GL(n,23).
Original entry on oeis.org
1, 22, 528, 12144, 279818, 6435792, 148035360, 3404812752, 78310972608, 1801152369478, 41426510921664, 952809751186128, 21914624425304688, 504036361781716368, 11592836324384010432, 266635235460831961152, 6132610415677439376122, 141050039560581098947824
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182611,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 23)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*23^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*23^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-23*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A182611
Number of conjugacy classes in GL(n,25).
Original entry on oeis.org
1, 24, 624, 15600, 390600, 9764976, 244140000, 6103499376, 152587874400, 3814696859400, 95367431234400, 2384185780844400, 59604644765235024, 1490116119130470000, 37252902984364860000, 931322574609121110624, 23283064365380605500600, 582076609134515127375600
Offset: 0
Cf.
A006951,
A006952,
A049314,
A049315,
A049316,
A182603,
A182604,
A182605,
A182606,
A182607,
A182608,
A182609,
A182610,
A182612.
-
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 25)) : n in [1..4]];
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*25^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
b[n_] := Sum[EulerPhi[d]*25^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-25*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
A221578
A sum over partitions (q=6), see first comment.
Original entry on oeis.org
1, 5, 35, 210, 1290, 7735, 46620, 279685, 1679370, 10076190, 60464670, 362787810, 2176773305, 13060638360, 78364108620, 470184650495, 2821109573550, 16926657432510, 101559954663930, 609359727929610, 3656158427989830, 21936950567886270, 131621703769781995
Offset: 0
-
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*6^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2013
-
b[n_] := Sum[EulerPhi[d]*6^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
N=66; x='x+O('x^N);
gf=prod(n=1,N, (1-x^n)/(1-6*x^n) );
v=Vec(gf)
Showing 1-10 of 17 results.
Comments