A218717 a(n) is smallest number such that a(n)^2 + 1 is divisible by 73^n.
0, 27, 776, 153765, 6459524, 404034898, 41865466758, 3219884218827, 239822883201307, 9110883894036198, 991706090146518323, 142813358470363920740, 8641533837443707913816, 586811715371303018585730, 2756887299416274753296336, 729513196939063257288876118
Offset: 0
Keywords
Examples
a(3) = 153765 because 153765^2+1 = 2 * 73 ^ 3 * 30389.
Crossrefs
Programs
-
Mathematica
b=27;n73=73;jo=Join[{0,b},Table[n73=73*n73;b=PowerMod[b,73,n73];b=Min[b,n73-b],{99}]]