A218727 a(n) = (24^n - 1)/23.
0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (25,-24).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 25*Self(n-1)-24*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{25, -24}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218727(n):=(24^n-1)/23$ makelist(A218727(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218727(n)=24^n\23
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-24*x)).
a(n) = floor(24^n/23).
a(n) = 25*a(n-1) - 24*a(n-2). (End)
E.g.f.: exp(x)*(exp(23*x) - 1)/23. - Elmo R. Oliveira, Aug 29 2024
Comments