A218736 a(n) = (33^n - 1)/32.
0, 1, 34, 1123, 37060, 1222981, 40358374, 1331826343, 43950269320, 1450358887561, 47861843289514, 1579440828553963, 52121547342280780, 1720011062295265741, 56760365055743769454, 1873092046839544391983, 61812037545704964935440, 2039797239008263842869521
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (34,-33).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 34*Self(n-1)-33*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{34, -33}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218736(n):=(33^n-1)/32$ makelist(A218736(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A218736(n)=33^n>>5
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 33*x)).
a(n) = 34*a(n-1) - 33*a(n-2).
a(n) = floor(33^n/32). (End)
E.g.f.: exp(x)*(exp(32*x) - 1)/32. - Stefano Spezia, Mar 24 2023
Comments