A218737 a(n) = (34^n - 1)/33.
0, 1, 35, 1191, 40495, 1376831, 46812255, 1591616671, 54114966815, 1839908871711, 62556901638175, 2126934655697951, 72315778293730335, 2458736461986831391, 83597039707552267295, 2842299350056777088031, 96638177901930420993055, 3285698048665634313763871
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (35,-34).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 35*Self(n-1)-34*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{35, -34}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218737(n):=(34^n-1)/33$ makelist(A218737(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218737(n)=34^n\33
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 34*x)).
a(n) = 35*a(n-1) - 34*a(n-2).
a(n) = floor(34^n/33). (End)
E.g.f.: exp(x)*(exp(33*x) - 1)/33. - Stefano Spezia, Mar 26 2023
Comments