A218740 a(n) = (37^n - 1)/36.
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (38,-37).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009981.
Programs
-
Magma
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218740(n):=(37^n-1)/36$ makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218740(n)=37^n\36
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 37*x)).
a(n) = 38*a(n-1) - 37*a(n-2).
a(n) = floor(37^n/36). (End)
E.g.f.: exp(x)*(exp(36*x) - 1)/36. - Stefano Spezia, Mar 28 2023
Comments