A218742 a(n) = (39^n - 1)/38.
0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (40,-39).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009983.
Programs
-
Magma
[n le 2 select n-1 else 40*Self(n-1) - 39*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{40, -39}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *) (39^Range[0,20]-1)/38 (* Harvey P. Dale, Mar 05 2023 *)
-
Maxima
A218742(n):=(39^n-1)/38$ makelist(A218742(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
a(n)=39^n\38
Formula
a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024
Comments