A218746 a(n) = (43^n - 1)/42.
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums
- Index entries related to q-numbers
- Index entries for linear recurrences with constant coefficients, signature (44,-43)
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *) Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
Maxima
A218746(n):=(43^n-1)/42$ makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218746(n)=43^n\42
Formula
G.f.: x/((1-x)*(1-43*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 44*a(n-1) - 43*a(n-2). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(43^n/42). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(22*x)*sinh(21*x)/21. - Elmo R. Oliveira, Aug 27 2024
Comments