A218747 a(n) = (44^n - 1)/43.
0, 1, 45, 1981, 87165, 3835261, 168751485, 7425065341, 326702875005, 14374926500221, 632496766009725, 27829857704427901, 1224513738994827645, 53878604515772416381, 2370658598693986320765, 104308978342535398113661, 4589595047071557517001085, 201942182071148530748047741
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (45,-44).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009988.
Programs
-
Magma
[n le 2 select n-1 else 45*Self(n-1) - 44*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{45, -44}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *) Join[{0},Accumulate[44^Range[0,20]]] (* Harvey P. Dale, Dec 28 2015 *)
-
Maxima
A218747(n):=(44^n-1)/43$ makelist(A218747(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218747(n)=44^n\43
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-44*x)).
a(n) = 45*a(n-1) - 44*a(n-2).
a(n) = floor(44^n/43). (End)
E.g.f.: exp(x)*(exp(43*x) - 1)/43. - Elmo R. Oliveira, Aug 29 2024
Comments