A218749 a(n) = (46^n - 1)/45.
0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (47,-46).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009990.
Programs
-
Magma
[n le 2 select n-1 else 47*Self(n-1) - 46*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Mathematica
LinearRecurrence[{47, -46}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *) (46^Range[0,20]-1)/45 (* Harvey P. Dale, Aug 17 2017 *)
-
Maxima
A218749(n):=(46^n-1)/45$ makelist(A218749(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218749(n)=46^n\45
Formula
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-46*x)).
a(n) = 47*a(n-1) - 46*a(n-2) with a(0)=0, a(1)=1.
a(n) = 46*a(n-1) + 1 with a(0)=0.
a(n) = floor(46^n/45). (End)
E.g.f.: exp(x)*(exp(45*x) - 1)/45. - Elmo R. Oliveira, Aug 29 2024
Comments