A218752 a(n) = (50^n - 1)/49.
0, 1, 51, 2551, 127551, 6377551, 318877551, 15943877551, 797193877551, 39859693877551, 1992984693877551, 99649234693877551, 4982461734693877551, 249123086734693877551, 12456154336734693877551, 622807716836734693877551, 31140385841836734693877551
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (51,-50).
Programs
-
Magma
[n le 2 select n-1 else 51*Self(n-1) - 50*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Mathematica
LinearRecurrence[{51, -50}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *) (50^Range[0,20]-1)/49 (* Harvey P. Dale, Sep 12 2022 *)
-
Maxima
makelist(floor(50^n/49), n, 0, 30); /* Martin Ettl, Nov 06 2012 */
-
PARI
a(n)=50^n\49
Formula
a(n) = floor(50^n/49).
G.f.: x/((1-x)(1-50x)).
a(0)=0, a(n) = 50*a(n-1) + 1. - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(x)*(exp(49*x) - 1)/49. - Elmo R. Oliveira, Aug 29 2024
Comments