cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239894 Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k slices.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 25, 9, 3, 1, 217, 58, 15, 4, 1, 2470, 500, 100, 22, 5, 1, 35647, 5574, 861, 152, 30, 6, 1, 637129, 78595, 9435, 1313, 215, 39, 7, 1, 13843948, 1376162, 130159, 14192, 1870, 290, 49, 8, 1, 360022957, 29417919, 2232792, 191850, 20001, 2547, 378, 60, 9, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 04 2014

Keywords

Examples

			Triangle begins:
1
1 1
4 2 1
25 9 3 1
217 58 15 4 1
...
		

Crossrefs

Row sums are A000366.
First column is A218826.

Programs

  • PARI
    \\ here G(n) is A000366(n).
    G(n)={(-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1))}
    A(n)={my(M=matrix(n,n)); for(n=1, n, for(k=2, n, M[n,k] = sum(i=1, n-k+1, M[i,1]*M[n-i, k-1])); M[n,1]=G(n+1)-sum(i=2, n, M[n,i])); M}
    {my(T=A(10)); for(n=1, #T, print(T[n, 1..n]))} \\ Andrew Howroyd, Feb 24 2020

Formula

T(n,k) = b(1)*T(n-1,k-1)+b(2)*T(n-2,k-1)+...+b(n-k+1)*T(k-1,k-1), where b(i) = A218826(i) for k > 1.
T(n,k) = Sum_{i=1..n-k+1} A218826(i)*T(n-i, k-1) for k > 1. - Andrew Howroyd, Feb 24 2020

Extensions

Terms a(16) and beyond from Andrew Howroyd, Feb 19 2020

A218827 Number of indecomposable (by shuffling) alternating n-anagrams.

Original entry on oeis.org

1, 1, 3, 16, 129, 1438, 20955, 384226, 8623101, 231978454, 7359117591, 271673905642, 11543742745689, 559348370431630, 30659822500574739, 1887796293833267746, 129757032076160998677, 9900820197631733600518, 834421415151529202479023, 77318409826165250051727514
Offset: 1

Views

Author

Michel Marcus, Nov 07 2012

Keywords

Comments

Alternating anagrams enumeration is related to A000366 by a(n) = A000366(n+1).
For n>2, a(n) are alternatively congruent to 3 and -2 modulo 18.

Crossrefs

Cf. A000366, A218826. First column of A239895.

Programs

  • Mathematica
    m = 20(*terms*); matc = Array[0&, {m, m}];
    a366[n_] := (-2^(-1))^(n - 2)*Sum[Binomial[n, k]*(1 - 2^(n + k + 1))* BernoulliB[n + k + 1], {k, 0, n}];
    ci[n_, k_] := ci[n, k] = Module[{v}, If[matc[[n, k]] == 0, If[n == k, v = 1, If[k == 1, v = c[n], v = Sum[Binomial[n - 1, i - 1]*c[i]*ci[n - i, k - 1], {i, 1, n - k + 1}]]]; matc[[n, k]] = v]; Return[matc[[n, k]]]];
    a[n_] := a366[n + 1] - If[n == 1, 0, Sum[ci[n, i], {i, 2, n}]];
    Array[a, m] (* Jean-François Alcover, Aug 03 2019, from PARI *)
  • PARI
    a000366(n)= {return((-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1)));}
    ci(n,k) = {if (matc[n,k] == 0, if (n==k, v = 1, if (k==1, v = c(n), v = sum(i=1, n-k+1, binomial(n-1,i-1)*c(i)*ci(n-i,k-1)););); matc[n,k] = v;); return(matc[n,k]);}
    c(n) = {if (n==1, return(a000366(n+1)), return(a000366(n+1) - sum(i=2, n, ci(n,i))));}
    allc(m) = {matc = matrix(m,m); for (i=1, m, print1(c(i), ", "););}
Showing 1-2 of 2 results.