A218905 Irregular triangle, read by rows, of kernel sizes of the integer partitions of n taken in graded reverse lexicographic ordering.
1, 1, 1, 1, 3, 1, 1, 3, 4, 3, 1, 1, 3, 4, 5, 4, 3, 1, 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 6, 8, 8, 8, 8, 7, 9, 8, 6, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 4, 6, 8, 8, 8, 10, 9, 8, 8, 9, 10, 8, 8, 8, 8, 7, 9, 8, 8, 6, 6, 6, 6, 5, 4, 4, 4, 4, 3, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 3, 4, 3, 1; 1, 3, 4, 5, 4, 3, 1; 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1; 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1; 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1; ...
Links
- Alois P. Heinz, Rows n = 1..26, flattened
Crossrefs
Cf. A218904.
Programs
-
Maple
h:= proc(l) local ll; ll:= [seq(add( `if`(l[j]>=i, 1, 0), j=1..nops(l)), i=1..l[1])]; add(min(l[i], ll[i]), i=1..min(nops(l), nops(ll))) end: g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1$n])], [`if`(i>n, [], g(n-i, i, [l[], i]))[], g(n, i-1, l)[]]): T:= n-> g(n, n, [])[]: seq(T(n), n=1..10); # Alois P. Heinz, Dec 14 2012
-
Mathematica
h[l_List] := Module[{ll}, ll = Flatten[Table[Sum[If[l[[j]] >= i, 1, 0], {j, 1, Length[l]}], {i, 1, l[[1]]}]]; Sum[Min[l[[i]], ll[[i]]], {i, 1, Min[ Length[l], Length[ll]]}]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[ {h[Join[l, Array[1&, n]]]}], Join[If[i>n, {}, g[n-i, i, Join [l, {i}]]], g[n, i-1, l]]]; T[n_] := g[n, n, {}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)
Comments