cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218905 Irregular triangle, read by rows, of kernel sizes of the integer partitions of n taken in graded reverse lexicographic ordering.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 3, 1, 1, 3, 4, 5, 4, 3, 1, 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 6, 8, 8, 8, 8, 7, 9, 8, 6, 6, 6, 6, 5, 4, 4, 4, 3, 1, 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 9, 4, 6, 8, 8, 8, 10, 9, 8, 8, 9, 10, 8, 8, 8, 8, 7, 9, 8, 8, 6, 6, 6, 6, 5, 4, 4, 4, 4, 3, 1
Offset: 1

Views

Author

Olivier Gérard, Nov 08 2012

Keywords

Comments

The kernel of an integer partition is the intersection of its Ferrers diagram and of the Ferrers diagram of its conjugate.
See comments in A080577 for the graded reverse lexicographic ordering.
Row length is A000041(n).
Row sum is A218904(n).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 3, 4, 3, 1;
  1, 3, 4, 5, 4, 3, 1;
  1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1;
  1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1;
  1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1;
  ...
		

Crossrefs

Cf. A218904.

Programs

  • Maple
    h:= proc(l) local ll; ll:= [seq(add(
           `if`(l[j]>=i, 1, 0), j=1..nops(l)), i=1..l[1])];
           add(min(l[i], ll[i]), i=1..min(nops(l), nops(ll)))
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1$n])],
        [`if`(i>n, [], g(n-i, i, [l[], i]))[], g(n, i-1, l)[]]):
    T:= n-> g(n, n, [])[]:
    seq(T(n), n=1..10);  # Alois P. Heinz, Dec 14 2012
  • Mathematica
    h[l_List] := Module[{ll}, ll = Flatten[Table[Sum[If[l[[j]] >= i, 1, 0], {j, 1, Length[l]}], {i, 1, l[[1]]}]]; Sum[Min[l[[i]], ll[[i]]], {i, 1, Min[ Length[l], Length[ll]]}]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[ {h[Join[l, Array[1&, n]]]}], Join[If[i>n, {}, g[n-i, i, Join [l, {i}]]], g[n, i-1, l]]]; T[n_] := g[n, n, {}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)