cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218906 Number of different kernels of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 27, 32, 37, 42, 48, 55, 63, 71, 80, 91, 103, 115, 129, 145, 162, 180, 200, 223, 248, 274, 303, 336, 371, 408, 449, 495, 544, 596, 653, 716, 784, 856, 934, 1021, 1114, 1212, 1319, 1436, 1561, 1694, 1838, 1995
Offset: 1

Views

Author

Olivier Gérard, Nov 08 2012

Keywords

Comments

The kernel of an integer partition is the intersection of its Ferrers diagram and of the Ferrers diagram of its conjugate.
It is also a partition of an integer (called the size of the kernel), always self-conjugate.
In fact, this sequence is the cumulative sum of A000700, the number of self-conjugate partitions of n.

Crossrefs

Cf. A218904.
Cf. A000700.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i-2))))
        end:
    a:= proc(n) a(n):= b(n, n-1+irem(n, 2))+`if`(n=1, 0, a(n-1)) end:
    seq (a(n), n=1..100);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i-2]]]]; a[n_] := b[n, n-1 + Mod[n, 2]] + If[n==1, 0, a[n-1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 12 2015, after Alois P. Heinz *)

Formula

G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)). - Ilya Gutkovskiy, Dec 25 2016