A218906 Number of different kernels of integer partitions of n.
1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 27, 32, 37, 42, 48, 55, 63, 71, 80, 91, 103, 115, 129, 145, 162, 180, 200, 223, 248, 274, 303, 336, 371, 408, 449, 495, 544, 596, 653, 716, 784, 856, 934, 1021, 1114, 1212, 1319, 1436, 1561, 1694, 1838, 1995
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i-2)))) end: a:= proc(n) a(n):= b(n, n-1+irem(n, 2))+`if`(n=1, 0, a(n-1)) end: seq (a(n), n=1..100); # Alois P. Heinz, Nov 09 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i-2]]]]; a[n_] := b[n, n-1 + Mod[n, 2]] + If[n==1, 0, a[n-1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 12 2015, after Alois P. Heinz *)
Formula
G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)). - Ilya Gutkovskiy, Dec 25 2016
Comments