cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219021 Sum of cubes of first n terms of Lucas sequence U(4,1) (A001353) divided by sum of their first powers.

Original entry on oeis.org

1, 13, 172, 2356, 32661, 454329, 6325816, 88099144, 1227032521, 17090245381, 238035989412, 3315412063548, 46177727142301, 643172746439665, 8958240642814960, 124772195953666576, 1737852501591502353, 24205162822158610557, 337134426993071036956, 4695676815022772628676, 65402340983109050660389
Offset: 1

Views

Author

Max Alekseyev, Nov 09 2012

Keywords

Comments

For a Lucas sequence U(k,1), the sum of the cubes of the first n terms is divisible by the sum of the first n terms. This sequence corresponds to the case of k=4.

Crossrefs

Programs

  • Magma
    I:=[1,13,172,2356,32661]; [n le 5 select I[n] else 19*Self(n-1)-76*Self(n-2)+76*Self(n-3)-19*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    CoefficientList[Series[(1 - 6 x + x^2)/((1 - x) (1 - 14 x + x^2) (1 - 4 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-14*x+x^2)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, Dec 08 2015
    

Formula

a(n) = Sum_{k=1..n} A001353(k)^3 / Sum_{k=1..n} A001353(k).
a(n) = Sum_{k=1..n} A001353(k)^3 / A061278(n).
From Colin Barker, Dec 08 2015: (Start)
a(n) = 19*a(n-1)-76*a(n-2)+76*a(n-3)-19*a(n-4)+a(n-5) for n>5.
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)*(1-4*x+x^2)).
(End)