cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219034 Triangular array read by rows: T(n,k) is the number of forests of rooted trees on n labeled nodes with exactly k isolated nodes; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 9, 6, 0, 1, 76, 36, 12, 0, 1, 805, 380, 90, 20, 0, 1, 10626, 4830, 1140, 180, 30, 0, 1, 167839, 74382, 16905, 2660, 315, 42, 0, 1, 3091768, 1342712, 297528, 45080, 5320, 504, 56, 0, 1, 65127465, 27825912, 6042204, 892584, 101430, 9576, 756, 72, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Nov 10 2012

Keywords

Comments

Column k=0 is A105785.
Row sums = (n+1)^(n-1).

Examples

			Triangle T(n,k) begins:
        1;
        0,       1;
        2,       0,      1;
        9,       6,      0,     1;
       76,      36,     12,     0,    1;
      805,     380,     90,    20,    0,   1;
    10626,    4830,   1140,   180,   30,   0,  1;
   167839,   74382,  16905,  2660,  315,  42,  0, 1;
  3091768, 1342712, 297528, 45080, 5320, 504, 56, 0, 1;
  ...
		

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(i^(i-1)
          *b(n-i)*binomial(n-1, i-1)*`if`(i=1, x, 1), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 31 2021
  • Mathematica
    nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[ Series[Exp[t-x+y x], {x,0,nn}], {x,y}] //Grid

Formula

E.g.f.: exp(T(x)-x+y*x) where T(x) is the e.g.f. for A000169.