cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219107 Number of compositions (ordered partitions) of n into distinct prime parts.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 0, 3, 2, 2, 8, 1, 8, 3, 8, 8, 10, 25, 16, 9, 16, 38, 16, 61, 18, 62, 46, 66, 160, 91, 138, 99, 70, 122, 306, 126, 314, 151, 362, 278, 588, 901, 602, 303, 654, 1142, 888, 1759, 892, 1226, 950, 2160, 1230, 3379, 1444, 2372, 2100, 4644, 7416
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2012

Keywords

Comments

a(0) = 0 iff n in {1,4,6}.

Examples

			a(5) = 3: [2,3], [3,2], [5].
a(7) = 3: [2,5], [5,2], [7].
a(8) = 2: [3,5], [5,3].
a(9) = 2: [2,7], [7,2].
a(10) = 8: [2,3,5], [2,5,3], [3,2,5], [3,5,2], [5,2,3], [5,3,2], [3,7], [7,3].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) b(n, i):=
          `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),
           [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0)))
        end:
    a:= proc(n) local l; l:= b(n, pi(n));
          a(n):= add(l[i]*(i-1)!, i=1..nops(l))
        end:
    seq(a(n), n=0..70);
    # second Maple program:
    s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end:
    b:= proc(n, i, t) option remember; `if`(s(i)`if`(p>n, 0, b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t)))
        end:
    a:= n-> b(n, numtheory[pi](n), 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    zip = With[{m=Max[Length[#1], Length[#2]]}, PadRight[#1, m]+PadRight[#2, m] ]&;
    b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, b[n, i-1] ~zip~ Join[{0}, If[Prime[i] > n, {}, b[n - Prime[i], i-1]]], {0}]];
    a[n_] := Module[{l}, l = b[n, PrimePi[n]]; Sum[l[[i]]*(i-1)!, {i, 1, Length[l]}]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 24 2017, adapted from Maple *)

Formula

a(n) = Sum_{k=0..A024936(n)} A219180(n,k)*k!.