cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A219180 Number T(n,k) of partitions of n into k distinct prime parts; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 1, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 2, 2, 0, 0, 2, 3, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 13 2012

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A024936(n). T(n,k) = 0 for k > A024936(n). Three rows are empty because there are no partitions of n into distinct prime parts for n in {1,4,6}.

Examples

			T(0,0) = 1: [], the empty partition.
T(2,1) = 1: [2].
T(5,1) = 1: [5], T(5,2) = 1: [2,3].
T(16,2) = 2: [5,11], [3,13].
Triangle T(n,k) begins:
  1;
  ;
  0, 1;
  0, 1;
  ;
  0, 1, 1;
  ;
  0, 1, 1;
  0, 0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 1;
  0, 0, 1, 1;
  ...
		

Crossrefs

Row lengths are 1 + A024936(n).
Row sums give: A000586.
Last elements of rows give: A219181.
Row maxima give: A219182.
Least n with T(n,k) > 0 is A007504(k).

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),
           [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0)))
        end:
    T:= proc(n) local l; l:= b(n, numtheory[pi](n));
           while nops(l)>0 and l[-1]=0 do l:= subsop(-1=NULL, l) od; l[]
        end:
    seq(T(n), n=0..50);
  • Mathematica
    nn=20;a=Table[Prime[n],{n,1,nn}];CoefficientList[Series[Product[1+y x^a[[i]],{i,1,nn}],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Nov 21 2012 *)
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, zip[Plus, b[n, i-1], Join[{0}, If[Prime[i] > n, {}, b[n-Prime[i], i-1]]], 0]]]; T[n_] := Module[{l}, l = b[n, PrimePi[n]]; While[Length[l]>0 && l[[-1]] == 0, l = ReplacePart[l, -1 -> Sequence[]]]; l]; Table[T[n], {n, 0, 50}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)
  • PARI
    T(n)={ Vec(prod(k=1, n, 1 + isprime(k)*y*x^k + O(x*x^n))) }
    { my(t=T(20)); for(n=1, #t, print(if(t[n]!=0, Vecrev(t[n]), []))) } \\ Andrew Howroyd, Dec 22 2017

Formula

G.f. of column k: Sum_{0
T(n,k) = [x^n*y^k] Product_{i>=1} (1+x^prime(i)*y).

A331844 Number of compositions (ordered partitions) of n into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 3, 8, 0, 0, 8, 30, 0, 0, 0, 2, 6, 1, 2, 6, 24, 2, 8, 6, 0, 0, 8, 30, 0, 0, 7, 32, 24, 2, 8, 30, 120, 6, 24, 2, 6, 0, 8, 36, 24, 1, 34, 150, 0, 2, 12, 30, 24, 0, 2, 38, 150, 0, 12, 78, 144, 2
Offset: 0

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(14) = 6 because we have [9,4,1], [9,1,4], [4,9,1], [4,1,9], [1,9,4] and [1,4,9].
		

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)*(2*i+1)/6n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
        end:
    a:= n-> b(n, isqrt(n), 0):
    seq(a(n), n=0..82);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
    a[n_] := b[n, Sqrt[n] // Floor, 0];
    a /@ Range[0, 82] (* Jean-François Alcover, Oct 29 2020, after Alois P. Heinz *)

A331843 Number of compositions (ordered partitions) of n into distinct triangular numbers.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 0, 2, 7, 2, 0, 2, 6, 1, 4, 6, 2, 12, 24, 3, 8, 0, 8, 32, 6, 2, 13, 26, 6, 34, 36, 0, 32, 150, 3, 20, 50, 14, 54, 126, 32, 32, 12, 55, 160, 78, 122, 44, 174, 4, 72, 294, 36, 201, 896, 128, 62, 180, 176, 164, 198, 852, 110, 320, 159, 212, 414
Offset: 0

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(10) = 7 because we have [10], [6, 3, 1], [6, 1, 3], [3, 6, 1], [3, 1, 6], [1, 6, 3] and [1, 3, 6].
		

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), 1+h(n-1), h(n-1)))
        end:
    b:= proc(n, i, p) option remember; (t->
          `if`(t*(i+2)/3n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2))
        end:
    a:= n-> b(n, h(n), 0):
    seq(a(n), n=0..73);  # Alois P. Heinz, Jan 31 2020
  • Mathematica
    h[n_] := h[n] = If[n<1, 0, If[IntegerQ @ Sqrt[8n+1], 1 + h[n-1], h[n-1]]];
    b[n_, i_, p_] := b[n, i, p] = Function[t, If[t (i + 2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t>n, 0, b[n - t, i - 1, p + 1]]]]][(i(i + 1)/2)];
    a[n_] := b[n, h[n], 0];
    a /@ Range[0, 73] (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

A331845 Number of compositions (ordered partitions) of n into distinct cubes.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 6, 24
Offset: 0

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(36) = 6 because we have [27,8,1], [27,1,8], [8,27,1], [8,1,27], [1,27,8] and [1,8,27].
		

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`((i*(i+1)/2)^2n, 0, b(n-i^3, i-1, p+1))+b(n, i-1, p)))
        end:
    a:= n-> b(n, iroot(n, 3), 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[(i(i+1)/2)^2 < n, 0, If[n == 0, p!, If[i^3 > n, 0, b[n-i^3, i-1, p+1]] + b[n, i-1, p]]];
    a[n_] := b[n, Floor[n^(1/3)], 0];
    a /@ Range[0, 100] (* Jean-François Alcover, Oct 31 2020, after Alois P. Heinz *)

A331846 Number of compositions (ordered partitions) of n into distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 9, 5, 12, 16, 21, 41, 42, 49, 59, 79, 130, 231, 230, 295, 226, 495, 609, 699, 1472, 1042, 1377, 2308, 2982, 3425, 3879, 4877, 7156, 7189, 13531, 14797, 13570, 19551, 27667, 30327, 36382, 47519, 60783, 70561, 78330, 136988, 121659, 174851
Offset: 0

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(7) = 5 because we have [7], [6, 1], [5, 2], [2, 5] and [1, 6].
		

A331847 Number of compositions (ordered partitions) of n into distinct prime powers (1 excluded).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 5, 3, 11, 10, 13, 18, 19, 52, 30, 61, 77, 114, 109, 146, 260, 318, 341, 356, 631, 666, 927, 848, 1849, 1978, 2305, 2213, 3560, 4302, 4748, 5588, 6779, 13952, 9044, 15534, 16897, 25084, 20731, 29524, 34882, 49360, 50765, 55112, 106903, 83652, 128552, 106638
Offset: 0

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(10) = 10 because we have [8, 2], [7, 3], [5, 3, 2], [5, 2, 3], [3, 7], [3, 5, 2], [3, 2, 5], [2, 8], [2, 5, 3] and [2, 3, 5].
		

A301428 Number of compositions (ordered partitions) of n into prime parts such that no two adjacent parts are equal (Carlitz compositions).

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 0, 4, 3, 3, 10, 3, 16, 12, 18, 35, 24, 64, 57, 90, 137, 136, 259, 270, 416, 573, 679, 1088, 1264, 1869, 2491, 3199, 4691, 5834, 8341, 11053, 14685, 20595, 26636, 37199, 49449, 66572, 91377, 120733, 166151, 221912, 300038, 407775, 544843, 743318, 996752
Offset: 0

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			a(7) = 4 because we have [7], [5, 2], [2, 5] and [2, 3, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 + x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^prime(k)/(1 + x^prime(k))).

A331981 Number of compositions (ordered partitions) of n into distinct odd primes.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 2, 1, 2, 1, 2, 6, 4, 1, 4, 7, 4, 12, 4, 13, 6, 12, 28, 18, 28, 19, 6, 25, 52, 24, 54, 30, 56, 31, 98, 156, 102, 37, 104, 157, 150, 276, 150, 175, 154, 288, 200, 528, 246, 307, 226, 666, 990, 780, 1038, 679, 348, 799, 1828, 1272, 1162, 1164
Offset: 0

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(16) = 4 because we have [13, 3], [11, 5], [5, 11] and [3, 13].
		

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<1, 0, ithprime(n+1)+s(n-1)) end:
    b:= proc(n, i, t) option remember; `if`(s(i)`if`(p>n, 0, b(n-p, i-1, t+1)))(ithprime(i+1))+b(n, i-1, t)))
        end:
    a:= n-> b(n, numtheory[pi](n), 0):
    seq(a(n), n=0..72);  # Alois P. Heinz, Feb 03 2020
  • Mathematica
    s[n_] := s[n] = If[n < 1, 0, Prime[n + 1] + s[n - 1]];
    b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0, If[n == 0, t!, If[# > n, 0, b[n - #, i - 1, t + 1]]&[Prime[i + 1]] + b[n, i - 1, t]]];
    a[n_] := b[n, PrimePi[n], 0];
    a /@ Range[0, 72] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

A331926 Number of compositions (ordered partitions) of n into distinct prime parts (counting 1 as a prime).

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 8, 3, 10, 8, 14, 31, 10, 33, 16, 38, 40, 61, 138, 69, 48, 98, 190, 121, 308, 128, 340, 270, 472, 991, 572, 885, 534, 446, 888, 1872, 914, 1927, 1084, 2300, 2058, 4303, 6508, 3759, 2246, 4856, 8238, 6889, 12630, 6368, 8708
Offset: 0

Author

Ilya Gutkovskiy, Feb 01 2020

Keywords

Examples

			a(6) = 8 because we have [5, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
		

Programs

  • PARI
    a(n)={subst(serlaplace(y^0*polcoef(prod(k=1, n, 1 + if(k==1 || isprime(k), y*x^k) + O(x*x^n)), n)), y, 1)} \\ Andrew Howroyd, Feb 01 2020

A339432 Number of compositions (ordered partitions) of n into an even number of distinct primes.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 24, 4, 2, 4, 26, 4, 48, 6, 50, 28, 48, 28, 72, 6, 74, 52, 98, 54, 96, 56, 120, 98, 122, 102, 864, 104, 146, 150, 866, 150, 1584, 154, 938, 200, 1632, 246, 3072, 226, 1706, 990, 3864, 1038, 4560, 348, 3914, 1828, 4634, 1162, 7488
Offset: 0

Author

Ilya Gutkovskiy, Dec 04 2020

Keywords

Examples

			a(16) = 4 because we have [13, 3], [3, 13], [11, 5] and [5, 11].
		

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, irem(1+p, 2)*p!, (s->
         `if`(s>n, 0, b(n, i+1, p)+b(n-s, i+1, p+1)))(ithprime(i)))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 04 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, Mod[1 + p, 2]*p!, Function[s, If[s > n, 0, b[n, i + 1, p] + b[n - s, i + 1, p + 1]]][Prime[i]]];
    a[n_] := b[n, 1, 0];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
Showing 1-10 of 18 results. Next