A331843 Number of compositions (ordered partitions) of n into distinct triangular numbers.
1, 1, 0, 1, 2, 0, 1, 2, 0, 2, 7, 2, 0, 2, 6, 1, 4, 6, 2, 12, 24, 3, 8, 0, 8, 32, 6, 2, 13, 26, 6, 34, 36, 0, 32, 150, 3, 20, 50, 14, 54, 126, 32, 32, 12, 55, 160, 78, 122, 44, 174, 4, 72, 294, 36, 201, 896, 128, 62, 180, 176, 164, 198, 852, 110, 320, 159, 212, 414
Offset: 0
Keywords
Examples
a(10) = 7 because we have [10], [6, 3, 1], [6, 1, 3], [3, 6, 1], [3, 1, 6], [1, 6, 3] and [1, 3, 6].
Links
Crossrefs
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`(issqr(8*n+1), 1+h(n-1), h(n-1))) end: b:= proc(n, i, p) option remember; (t-> `if`(t*(i+2)/3
n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2)) end: a:= n-> b(n, h(n), 0): seq(a(n), n=0..73); # Alois P. Heinz, Jan 31 2020 -
Mathematica
h[n_] := h[n] = If[n<1, 0, If[IntegerQ @ Sqrt[8n+1], 1 + h[n-1], h[n-1]]]; b[n_, i_, p_] := b[n, i, p] = Function[t, If[t (i + 2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t>n, 0, b[n - t, i - 1, p + 1]]]]][(i(i + 1)/2)]; a[n_] := b[n, h[n], 0]; a /@ Range[0, 73] (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)