A331900 Number of compositions (ordered partitions) of the n-th triangular number into distinct triangular numbers.
1, 1, 1, 1, 7, 1, 3, 13, 3, 55, 201, 159, 865, 1803, 7093, 43431, 14253, 22903, 130851, 120763, 1099693, 4527293, 4976767, 7516897, 14349685, 72866239, 81946383, 167841291, 897853735, 455799253, 946267825, 5054280915, 3941268001, 17066300985, 49111862599
Offset: 0
Keywords
Examples
a(6) = 3 because we have [21], [15, 6] and [6, 15].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; (t-> `if`(t*(i+2)/3
n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2)) end: a:= n-> b(n*(n+1)/2, n, 0): seq(a(n), n=0..37); # Alois P. Heinz, Jan 31 2020 -
Mathematica
b[n_, i_, p_] := b[n, i, p] = With[{t = i(i+1)/2}, If[t(i+2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t > n, 0, b[n-t, i-1, p+1]]]]]; a[n_] := b[n(n+1)/2, n, 0]; a /@ Range[0, 37] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jan 31 2020