cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336890 Numbers that eventually reach the fixed point 8208 under "x --> sum of the fourth powers of digits of x".

Original entry on oeis.org

12, 17, 21, 46, 64, 71, 102, 107, 120, 137, 145, 154, 170, 173, 201, 210, 224, 242, 279, 288, 297, 317, 349, 357, 371, 375, 379, 394, 397, 406, 415, 422, 439, 451, 460, 493, 514, 537, 541, 573, 599, 604, 640, 701, 710, 713, 729, 731, 735, 739, 753, 792, 793, 828, 882, 927, 934, 937, 943, 959, 972, 973, 995
Offset: 1

Views

Author

Sergio Falcon, Aug 07 2020

Keywords

Examples

			12 --> 1^4+2^4 = 17 --> 1^4+7^4 = 2402 --> 2^4+4^4+0^4+2^4 = 288 --> 2^4+8^4+8^4 = 8208.
		

Crossrefs

Programs

  • Maple
    V:= Vector(32805): V[8208]:= true:
    g:= proc(n) local L, t;
      add(t^4, t = convert(n,base,10))
    end proc:
    f:= proc(n) local x,S; global V;
      if n <= 32805 then
         if V[n] <> 0 then return V[n]
         else S:= [n]
         fi
      else S:= []
      fi;
      x:= n;
      do
        x:= g(x);
        if V[x] <> 0 then
           V[S]:= V[x];
           return V[x]
        elif member(x,S) then
           V[S]:= false;
           return false
        fi;
        if x <= 32805 then S:= [op(S), x] fi;
      od;
    end proc;
    select(f, [$1..10000]); # Robert Israel, Sep 03 2020
  • Mathematica
    okQ[n] := MemberQ[NestList[Total[IntegerDigits[#]^4]&, n, 30], 8208]; Select[Range[1000], okQ]

A219112 Numbers that eventually reach 1 under "x -> sum of 5th power of digits of x".

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 1111222, 1112122, 1112212, 1112221, 1121122, 1121212, 1121221, 1122112, 1122121, 1122211, 1211122, 1211212, 1211221, 1212112, 1212121, 1212211, 1221112, 1221121, 1221211, 1222111, 2111122, 2111212, 2111221, 2112112
Offset: 1

Views

Author

Michel Lagneau, Nov 12 2012

Keywords

Examples

			1112122 is in the sequence because 1^5 +1^5+1^5+2^5+1^5 +2^5+2^5 = 100 and 1^5 + 0^5 + 0^5 = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], FixedPoint[Total[IntegerDigits[#]^5]&, #, 10]==1&]
Showing 1-2 of 2 results.