A219121 Central terms in rows of triangle A219120.
1, 1, -2, -19, -74, -68, 1856, 22717, 182806, 1095506, 2706452, -62235754, -1630900556, -28213310474, -422792067164, -5747245586467, -68720160772442, -602550199498622, 1056275553274100, 251539588303778798, 9237652624016037908, 263685036472764512992
Offset: 1
Keywords
Examples
Triangle A219120 begins: 1; 1, 1, -1; 1, 5, -2, -2, 1; 1, 15, 13, -19, 3, 3, -1; 1, 37, 128, -26, -74, 46, -4, -4, 1; 1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1; 1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1; ... in which the o.g.f. of row n, R(x,n), is given by: R(x,n) = (1-x)^(2*n-1) * Sum_{k>=0} k^n *(k+1)^(k-1) * exp(-(k+1)*x) * x^k/k!; note that the coefficient of x^n in R(x,n), for n>=1, forms this sequence. The signs of the terms of this sequence begin: +,+, -,-,-,-, +,+,+,+,+, -,-,-,-,-,-,-, +,+,+,+,+,+,+,+,+,+, -,-,-,-,-,-,-,-,-,-,-, +,+,+,+,+,+,+,+,+,+,+,+,+, -,-,-,-,-,-,-,-,-,-,-,-,-,-, +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-, +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-, +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A219120.
Programs
-
PARI
{a(n)=polcoeff((1-x)^(2*n-1)*sum(k=0,2*n,(k^n)*(k+1)^(k-1)*x^k/k!*exp(-(k+1)*x +x*O(x^n))),n)} for(n=1,30,print1(a(n),", "))
Formula
a(n) = [x^n] (1-x)^(2*n-1) * Sum_{k>=0} k^n *(k+1)^(k-1) * exp(-(k+1)*x) * x^k/k!.
Comments