A219160 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 4.
4, 52, 140452, 2770663499604052, 21269209556953516583554114034636483645584976452
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..6
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977.
Programs
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 4}, a, {n, 0, 5}] (* G. C. Greubel, Dec 30 2016 *)
Formula
a(n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(3). The rate of convergence is cubic. Fine remarks that taking the first twelve factors of the product would give well over 300,000 correct decimals for sqrt(3).
Comments