A219219 Numbers k such that 2^k (mod k^2) is prime.
5, 21, 53, 55, 61, 95, 111, 155, 165, 189, 193, 213, 221, 227, 245, 249, 257, 289, 291, 303, 305, 307, 317, 339, 345, 355, 363, 383, 385, 423, 429, 437, 457, 465, 477, 505, 577, 597, 601, 607, 621, 653, 655, 679, 705, 715, 727, 749, 751, 765, 781, 849, 889, 939
Offset: 1
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Cf. A066606.
Programs
-
Java
import java.math.BigInteger; public class A219219 { public static void main (String[] args) { BigInteger b2 = BigInteger.valueOf(2); for (int n=1; ; n++) { BigInteger bn = BigInteger.valueOf(n); BigInteger pp = b2.modPow(bn, bn.multiply(bn)); if (pp.isProbablePrime(2)) { if (pp.isProbablePrime(80)) System.out.printf("%d, ",n); } } } }
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while not isprime(2 &^k mod k^2) do od; k end: seq (a(n), n=1..100); # Alois P. Heinz, Nov 17 2012
-
Mathematica
Flatten[Position[Table[PowerMod[2, k, k^2], {k, 1000}], ?(PrimeQ[#] &)]] (* _T. D. Noe, Nov 15 2012 *) Select[Range[1000],PrimeQ[PowerMod[2,#,#^2]]&] (* Harvey P. Dale, Mar 29 2020 *)
-
Python
from sympy import isprime def aupto(limit): alst = [] for k in range(1, limit+1): if isprime(pow(2, k, k*k)): alst.append(k) return alst print(aupto(939)) # Michael S. Branicky, May 21 2021
Comments