A219225 Area A of the cyclic quadrilaterals PQRS with PQ>=QR>=RS>=SP, such that A, the sides, the radius of the circumcircle and the two diagonals are integers.
768, 936, 1200, 2856, 3072, 3744, 4536, 4800, 5016, 5376, 6696, 6912, 7056, 7560, 7752, 8184, 8424, 9240, 10800, 11424, 11544, 12288, 12480, 12936, 14976, 16848, 18144, 18696, 19200, 19200, 20064, 21504, 23040, 23400, 24024, 25080, 25704, 25944, 26784, 27048, 27648, 27648, 27648, 27864, 28224, 28560, 30000, 30240, 31008, 32736, 33696, 34560, 36960, 36960, 37632, 40392, 40560, 40824, 41064, 41184, 42240, 42840, 43200
Offset: 1
Keywords
Examples
936 is in the sequence because, with sides (a,b,c,d) = (14,30,40,48) we obtain: s = (14+30+40+48)/2 = 66; A = sqrt((66-14)(66-30)(66-40)(66-48))=936; R = sqrt((14*30+40*48)(14*40+30*48)(14*48+30*40))/(4*936) = 93600/3744 =25; p = sqrt((14*30+40*48)( 14*40+30*48)/( 14*48+30*40)) = 50; q= sqrt((14*40+30*48)( 14*48+30*40)/( 14*30+40*48)) = 40.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.
Links
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69 (1996), 149.
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Crossrefs
Cf. A210250.
Programs
-
Mathematica
SMax=10000; Do[ Do[ x=S^2/(u v w); If[u+v+w+x//OddQ, Continue[]]; If[v+w+x<=u, Continue[]]; r=Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x]/(4S); If[r//IntegerQ//Not, Continue[]]; {a, b, c, d}=(u+v+w+x)/2-{u, v, w, x}; If[4S r/(a b+c d)//IntegerQ//Not,Continue[]]; If[4S r/(a d+b c)//IntegerQ//Not,Continue[]]; (*{a, b, c, d, r, S}//Sow*); S//Sow; Break[]; (*to generate a table, comment out this line and uncomment previous line*) , {u, S^2//Divisors//Select[#, S<=#^2&]&} , {v, S^2/u//Divisors//Select[#, S^2<=u#^3&<=u&]&} , {w, S^2/(u v)//Divisors//Select[#, S^2<=u v#^2&<=v&]&} ] , {S, 24, SMax, 24} ]//Reap//Last//Last {x, r, a, b, c, d}=.; (* Albert Lau, May 25 2016 *)
Extensions
Incorrect Mathematica program removed by Albert Lau, May 25 2016
Missing terms 18144, 20064, 21504 and more term from Albert Lau, May 25 2016
Comments