A219226 Number of rooted unlabeled ordered (plane) trees with 2n leaves such that i) every internal node has an even number of children and ii) every path from the root to a leaf is the same length.
0, 1, 2, 3, 6, 13, 29, 65, 147, 337, 785, 1857, 4452, 10789, 26365, 64833, 160167, 397025, 986593, 2456193, 6123726, 15286021, 38198573, 95555937, 239294222, 599914489, 1505750425, 3783967201, 9521244242, 23988787485, 60520345765, 152889244033, 386752047956
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2401
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 91
Programs
-
Maple
a:= proc(n) option remember; add(`if`(k=0, 1, `if`(k::odd, a((k+1)/2)*binomial(n-1, k), 0)), k=0..n-1) end: seq(a(n), n=0..35); # Alois P. Heinz, Feb 26 2022
-
Mathematica
nn=60;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x-f[x^2/(1-x^2)],{x,0,nn}],x];a[0]=0;Table[a[n],{n,0,nn,2}]/.sol
Formula
O.g.f. satisfies A(x) = x + A(x^2/(1-x^2)).