A219228 O.g.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * (n^3*x)^n/n! * exp(-n^3*x*A(x)).
1, 1, 32, 3119, 625710, 214333471, 112105268136, 83149960883200, 83014425998481126, 107334569041127441462, 174471878478682785998864, 348242875992753988109552778, 837327855535084109106340786272, 2387108242583316451939303856237037
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x + 32*x^2 + 3119*x^3 + 625710*x^4 + 214333471*x^5 +... where A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^6*x^2*A(x)^2/2!*exp(-8*x*A(x)) + 3^9*x^3*A(x)^3/3!*exp(-27*x*A(x)) + 4^12*x^4*A(x)^4/4!*exp(-64*x*A(x)) + 5^15*x^5*A(x)^5/5!*exp(-125*x*A(x)) +... simplifies to a power series in x with integer coefficients. G.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins: G(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + 210766920*x^5 + 110687251039*x^6 +...+ Stirling2(3*n,n)*x^n +...
Programs
-
PARI
{a(n)=local(A=1);for(i=1,n,A=sum(m=0, n, (m^3*x*A)^m/m!*exp(-m^3*x*A+x*O(x^n))));polcoeff(A, n)} for(n=0,21,print1(a(n),", "))
Formula
O.g.f. satisfies: A(x) = Sum_{n>=0} Stirling2(3*n,n) * x^n * A(x)^n.
Comments