cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217913 O.g.f.: Sum_{n>=0} (n^3)^n * exp(-n^3*x) * x^n / n!.

Original entry on oeis.org

1, 1, 31, 3025, 611501, 210766920, 110687251039, 82310957214948, 82318282158320505, 106563273280541795575, 173373343599189364594756, 346289681454731077633095526, 833091176987705031151553054843, 2376102520162485084539597049185710
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + ... + Stirling2(3*n, n)*x^n + ...
where
A(x) = 1 + 1^3*x*exp(-1^3*x) + 2^6*exp(-2^3*x)*x^2/2! + 3^9*exp(-3^3*x)*x^3/3! + 4^12*exp(-4^3*x)*x^4/4! + 5^15*exp(-5^3*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n,n],{n,0,20}] (* Vaclav Kotesovec, Feb 28 2013 *)
  • Maxima
    makelist(stirling2(3*n, n), n, 0, 13); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^3)^k*exp(-k^3*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^3)^k*x^k/(1+k^3*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(3*n, n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

a(n) = Stirling2(3*n, n).
a(n) = [x^(3*n)] (3*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(2*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^3)^k*x^k / (1 + k^3*x)^(k+1).
a(n) ~ 9^n*exp(n*(c+1))*n^(2*n)/((c+3)^(2*n)*sqrt(2*Pi*(c+1)*n)), where c = -0.1785606278779211... = LambertW(-3/exp(3)) = A226750. - Vaclav Kotesovec, Feb 28 2013

A219184 O.g.f. satisfies: A(x) = Sum_{n>=0} n^(2*n) * x^n * A(x)^n / n! * exp(-n^2*x*A(x)).

Original entry on oeis.org

1, 1, 8, 112, 2202, 55641, 1724050, 63550446, 2725133134, 133546286188, 7370574862110, 452601918694564, 30610161317492690, 2260721225822606054, 181023122013996360316, 15619416644091171417138, 1444615406376578862379054, 142565035949775130517868740
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2012

Keywords

Comments

Compare to the LambertW identity:
Sum_{n>=0} n^n * x^n * G(x)^n / n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).

Examples

			O.g.f.: A(x) = 1 + x + 8*x^2 + 112*x^3 + 2202*x^4 + 55641*x^5 + 1724050*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^4*x^2*A(x)^2/2!*exp(-4*x*A(x)) + 3^6*x^3*A(x)^3/3!*exp(-9*x*A(x)) + 4^8*x^4*A(x)^4/4!*exp(-16*x*A(x)) + 5^10*x^5*A(x)^5/5!*exp(-25*x*A(x)) +...
simplifies to a power series in x with integer coefficients.
O.g.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins:
G(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 + 1323652*x^6 +...+ Stirling2(2*n,n)*x^n +...
so that A(x) = (1/x)*Series_Reversion(x/G(x)).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);for(i=1,n,A=sum(m=0, n, (m^2*x*A)^m/m!*exp(-m^2*x*A+x*O(x^n))));polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))

Formula

O.g.f. satisfies: A(x) = Sum_{n>=0} Stirling2(2*n,n) * x^n * A(x)^n.
Showing 1-2 of 2 results.