A219274 Number T(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
1, 1, 1, 2, 1, 3, 5, 16, 1, 4, 9, 49, 70, 168, 768, 1, 5, 14, 92, 204, 738, 3300, 7887, 15015, 48048, 292864, 1, 6, 20, 153, 405, 1815, 9460, 28743, 101673, 333905, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 1, 7, 27, 235, 715, 3630, 21307
Offset: 0
Examples
T(3,2) = 2: +------+ +------+ | 1 2 | | 1 3 | | 3 .--+ | 2 .--+ +---+ +---+ Triangle T(n,k) begins: 1; . 1; . 1; . 2, 1; . 3, 1; . 5, 4, 1; . 16, 9, 5, 1; . 49, 14, 6, 1; . 70, 92, 20, 7, 1; . 168, 204, 153, 27, 8, 1; . 768, 738, 405, 235, 35, 9, 1;
Links
- Alois P. Heinz, Columns k = 0..22, flattened
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=i*(i+1)/2; `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i])))) end: T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])): seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
-
Mathematica
h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := Module[{s = i(i + 1)/2}, If[n == s, h[Join[l, Table[i - j, {j, 0, i - 1}]]], If[n > s, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Append[l, i]]]]]]; T[n_, k_] := If[k > n, 0, g[n - k, k - 1, {k}]]; Table[Table[T[n, k], {n, k, k(k + 1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)
Comments