A219281 Smallest number k such that ChebyshevT[2^n, k] is prime.
2, 2, 2, 3, 2, 8, 164, 29, 60, 213, 181, 652
Offset: 0
Examples
T(1, x) = x => T(1,2) = 2 is prime => a(0) = 2; T(2, x) = 2x^2 - 1 => T(2, 2) = 7 is prime => a(1) = 2; T(4, x) = 8x^4 - 8x^2 + 1 => T(4,2) = 97 is prime => a(2) = 2.
Programs
-
Maple
for n from 0 to 11 do P:= unapply(orthopoly[T](2^n,x),x): for k from 1 do if isprime(P(k)) then A[n]:= k; break fi od od: seq(A[n],n=0..11); # Robert Israel, Aug 13 2018
-
Mathematica
Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; k, {n, 0, 7}]
Extensions
a(10) and a(11) from Robert Israel, Aug 13 2018
Comments