cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107590 G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 50, 181, 698, 2837, 12062, 53374, 244923, 1162536, 5697119, 28786266, 149814059, 802436166, 4420515689, 25031466730, 145616087486, 869760092469, 5330945435272, 33508699787635, 215863606818041
Offset: 0

Views

Author

Paul D. Hanna, May 17 2005

Keywords

Examples

			A = 1 + x + x^2*A^1 + x^3*A^3 + x^4*A^6 + x^5*A^10 +...
= 1 + x + (x^2 + x^3 + x^4 + 2*x^5 + 5*x^6 + 15*x^7 +...)
+ (x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 33*x^7 +...)
+ (x^4 + 6*x^5 + 21*x^6 + 62*x^7 +...)
+ (x^5 + 10*x^6 + 55*x^7 +...) +...
= 1 + x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 50*x^6 + 181*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(k=1,n, A = 1 + sum(j=1,n, x^j * A^(j*(j-1)/2) + x*O(x^n)) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = x/series-reversion(x*F(x)) and thus A(x) = F(x/A(x)) where F(x) = A(x*F(x)) is the g.f. of A107591.
G.f. A(x)^2 = x/series-reversion(x*G(x)^2) and thus A(x) = G(x/A(x)^2) where G(x) = A(x*G(x)^2) is the g.f. of A107592.
Contribution from Paul D. Hanna, Apr 25 2010: (Start)
Let A = g.f. A(x), then A satisfies the continued fraction:
A = 1/(1- x/(1- (A-1)*x/(1- A^2*x/(1- A*(A^2-1)*x/(1- A^4*x/(1- A^2*(A^3-1)*x/(1- A^6*x/(1- A^3*(A^4-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)

A155804 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * A(x)^(n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 19, 161, 1606, 21022, 323485, 5874913, 122077756, 2871573596, 75437801539, 2193468714373, 70020045331510, 2437979768144026, 92073099488632441, 3753886179551636513, 164556499026975482008
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 161*x^5/5! +...
where e.g.f. A(x) satisfies:
A(x) = 1 + x + x^2/2!*A(x) + x^3/3!*A(x)^3 + x^4/4!*A(x)^6 + x^5/5!*A(x)^10 +...
Let B(x) = A(x*B(x)) be the e.g.f. of A155805 then:
B(x) = 1 + x*B(x) + x^2/2!*B(x)^3 + x^3/3!*B(x)^6 + x^4/4!*B(x)^10 +...
B(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 191*x^4/4! + 2656*x^5/5! + 47392*x^6/6! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k*A^(k*(k-1)/2)/k!+x*O(x^n))); n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A(x) = B(x/A(x)) and A(x*B(x)) = B(x) where B(x) satisfies:
B(x) = Sum_{n>=0} x^n/n! * B(x)^(n*(n+1)/2) and is the e.g.f. of A155805.

A219359 G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 3, 15, 99, 785, 7151, 73097, 827501, 10295549, 140100323, 2077648871, 33466994639, 583535328293, 10971899911703, 221571516903233, 4786126571515961, 110142864494603313, 2690257065904106571, 69500954207702580927, 1893141166438848208747, 54217997416999007587201
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 99*x^4 + 785*x^5 + 7151*x^6 +...
where
A(x) = 1 + 1!*x*A(x) + 2!*x^2*A(x)^3 + 3!*x^3*A(x)^6 + 4!*x^4*A(x)^10 + 5!*x^5*A(x)^15 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k!*x^k*(A+x*O(x^n))^(k*(k+1)/2)));polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = B(x*A(x)) and A(x/B(x)) = B(x) where B(x) satisfies:
B(x) = Sum_{n>=0} n!*x^n * B(x)^(n*(n-1)/2) and is the g.f. of A219358.
Showing 1-3 of 3 results.