cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107591 G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 408, 1939, 9635, 49614, 263140, 1431301, 7959568, 45152340, 260847526, 1532825675, 9154581802, 55537885743, 342147577227, 2140251570508, 13594688301758, 87702596534110, 574815620158265, 3829029514213952
Offset: 0

Views

Author

Paul D. Hanna, May 17 2005, May 05 2010

Keywords

Examples

			A = 1 + x*A^1 + x^2*A^3 + x^3*A^6 + x^4*A^10 + x^5*A^15 ...
= 1 + (x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 91*x^6 +...)
+ (x^2 + 3*x^3 + 9*x^4 + 31*x^5 + 120*x^6 +...)
+ (x^3 + 6*x^4 + 27*x^5 + 116*x^6 +...)
+ (x^4 + 10*x^5 + 65*x^6 +...) +...
= 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(k=1,n,A=1+sum(j=1,n,x^j*A^(j*(j+1)/2)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. A(x) = (1/x)*series-reversion(x/F(x)) and A(x) = F(x*A(x)) where F(x) = A(x/F(x)) is the g.f. of A107590.
G.f. A(x) = x/series-reversion(x*G(x)) and A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A107592.
Contribution from Paul D. Hanna, Apr 24 2010: (Start)
Let A = g.f. A(x), then A satisfies the continued fraction:
A = 1/(1- A*x/(1- A*(A-1)*x/(1- A^3*x/(1- A^2*(A^2-1)*x/(1- A^5*x/(1- A^3*(A^3-1)*x/(1- A^7*x/(1- A^4*(A^4-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)
Contribution from Paul D. Hanna, May 05 2010: (Start)
Let A = g.f. A(x), then A satisfies:
A = Sum_{n>=0} x^n*A^n*Product_{k=1..n} (1-x*A^(2k-1))/(1-x*A^(2k))
due to a q-series identity.
(End)

A155805 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * A(x)^(n(n+1)/2).

Original entry on oeis.org

1, 1, 3, 19, 191, 2656, 47392, 1034335, 26721781, 798018616, 27058991246, 1027237384009, 43172232488959, 1990253576425960, 99871804451808040, 5419775866582473211, 316301430225674131433, 19756213549154356027408
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 191*x^4/4! + 2656*x^5/5! +...
where e.g.f. A(x) satisfies:
A(x) = 1 + x*A(x) + x^2/2!*A(x)^3 + x^3/3!*A(x)^6 + x^4/4!*A(x)^10 +...
Let B(x) = A(x/B(x)) be the e.g.f. of A155804 then:
B(x) = 1 + x + x^2/2!*B(x) + x^3/3!*B(x)^3 + x^4/4!*B(x)^6 + x^5/5!*B(x)^10 +...
B(x) = 1 + x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 161*x^5/5! + 1606*x^6/6! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k*A^(k*(k+1)/2)/k!+x*O(x^n))); n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A(x) = B(x*A(x)) and A(x/B(x)) = B(x) where B(x) satisfies:
B(x) = Sum_{n>=0} x^n/n! * B(x)^(n*(n-1)/2) and is the e.g.f. of A155804.

A219358 G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 46, 334, 2882, 28604, 320248, 3993184, 54942740, 828086732, 13586200504, 241294019584, 4615319816192, 94629675177320, 2070911506927360, 48185049542009248, 1187816429730925424, 30923773410431125424, 847808674826433774928, 24414218135569507213312
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 334*x^5 + 2882*x^6 +...
where
A(x) = 1 + 1!*x + 2!*x^2*A(x) + 3!*x^3*A(x)^3 + 4!*x^4*A(x)^6 + 5!*x^5*A(x)^10 + 6!*x^6*A(x)^15 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k!*x^k*(A+x*O(x^n))^(k*(k-1)/2)));polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = B(x/A(x)) and A(x*B(x)) = B(x) where B(x) satisfies:
B(x) = Sum_{n>=0} n!*x^n * B(x)^(n*(n+1)/2) and is the g.f. of A219359.
Showing 1-3 of 3 results.