A219364 Numbers such that the product of divisors of n is greater than the product of divisors of sigma(n).
4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 192, 200, 208, 225, 240, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 704, 720, 729, 768, 784, 800, 832, 882, 900, 960, 976
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- F. Luca, On the product of divisors of n and sigma(n), J. Inequal. Pure Appl. Math., Volume 4, Issue 2, Article 46, 2003.
Programs
-
Mathematica
Select[Range[1000], Times @@ Divisors[#] > Times @@ Divisors[DivisorSigma[1, #]] &] (* T. D. Noe, Nov 19 2012 *)
-
PARI
A007955(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) is(n)=A007955(n)>A007955(sigma(n)) \\ Charles R Greathouse IV, Feb 04 2013
-
Python
from math import isqrt from itertools import count, islice from sympy import divisor_count, divisor_sigma def A219364_gen(): # generator of terms return filter(lambda n: (f:=(lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2)))(n) > f(divisor_sigma(n)),count(1)) A219364_list = list(islice(A219364_gen(),20)) # Chai Wah Wu, Jun 25 2022
Comments