cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A219465 Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 n X 2 array.

Original entry on oeis.org

4, 23, 82, 239, 619, 1471, 3259, 6800, 13464, 25453, 46178, 80755, 136643, 224449, 358927, 560200, 855236, 1279611, 1879594, 2714591, 3859987, 5410427, 7483579, 10224424, 13810120, 18455489, 24419178, 32010547, 41597339, 53614189, 68572031
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2012

Keywords

Comments

Column 2 of A219471.

Examples

			Some solutions for n=3:
..2..2....0..0....1..1....1..1....2..2....1..1....1..1....0..0....1..1....1..1
..0..0....1..1....0..0....1..1....0..0....1..1....1..1....0..1....1..1....2..2
..0..1....3..3....0..3....0..0....0..3....1..3....1..2....0..0....3..3....2..3
		

Crossrefs

Cf. A219471.

Formula

Empirical: a(n) = (1/20160)*n^8 + (1/1260)*n^7 + (1/480)*n^6 + (4/45)*n^5 - (11/960)*n^4 + (277/180)*n^3 + (7607/5040)*n^2 + (61/70)*n.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(4 - 13*x + 19*x^2 - 7*x^3 - 8*x^4 + 10*x^5 - 2*x^6 - x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A219466 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX3 array.

Original entry on oeis.org

10, 68, 673, 5040, 32229, 185800, 982456, 4815782, 22059734, 95049799, 387398157, 1500899485, 5551333536, 19675267097, 67041131529, 220243855894, 699365511947, 2151361250171, 6423848162633, 18651881494908, 52745972542258
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Column 3 of A219471

Examples

			Some solutions for n=3
..1..1..1....0..0..1....0..0..2....0..0..1....0..0..1....0..0..0....0..0..0
..1..1..2....1..1..2....0..0..0....0..0..2....0..0..3....0..0..3....0..0..3
..2..2..2....3..0..0....3..0..2....2..2..2....2..2..3....2..1..1....1..0..0
		

Formula

Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/887984070401699680407482553650380800000000)*n^37 + (211/743986653579802434935998896301670400000000)*n^36 + (37/901802004339154466589089571274752000000)*n^35 + (23431/5904655980792082816952372192870400000000)*n^34 + (751/2566497818368045269611288985600000000)*n^33 + (18234521/994634563609361544032084085964800000000)*n^32 + (1202479/1177082323798060998854537379840000000)*n^31 + (3257916313/64169971845765260905295747481600000000)*n^30 + (15998577713/7129996871751695656143971942400000000)*n^29 + (34241128937/386354510291963804027505868800000000)*n^28 + (35548456637/11038700294056108686500167680000000)*n^27 + (10947288367751/101418058951640498557220290560000000)*n^26 + (237907312593869/73758588328465817132523847680000000)*n^25 + (71600877671657743/811344471613123988457762324480000000)*n^24 + (122707098285448223/54089631440874932563850821632000000)*n^23 + (3671970390070217/70641033314117766862602240000000)*n^22 + (1589133646897620433/1483461699596473104114647040000000)*n^21 + (264925397893974283417499/12429925580918848139376627548160000000)*n^20 + (3615125506802045691703/10064717069569917521762451456000000)*n^19 + (99834558409326312420878167/17990681761856227570150381977600000000)*n^18 + (8082599270771039606958097/88189616479687390049756774400000000)*n^17 + (40084616932042931244243721/48294313786495475503438233600000000)*n^16 + (82210406612645728578527/5375990402949403581087744000000)*n^15 + (77521233231877746972047550487/760635442137303739179152179200000000)*n^14 + (318314789653271743306315093267/190158860534325934794788044800000000)*n^13 - (158292888536859409403815888861/17287169139484175890435276800000000)*n^12 + (70868942634763610614565096827/128053104736919821410631680000000)*n^11 - (28239949688137362945250580263751/3978792897182865879544627200000000)*n^10 + (1250965614347251807731812019833/15788860703106610633113600000000)*n^9 - (23380069818927909043317980888257301/43969345581368059511449190400000000)*n^8 + (1533222352111813385357485885877/454604482851199953592320000000)*n^7 - (2368130301559082421877403072112469/97327978500424090064405760000000)*n^6 + (1758899229989365280437101191329/9040100174194737263616000000)*n^5 - (28115613360169956438589192637861/24718216762012467317944320000)*n^4 + (20392529937699678379400434687/4904408087700886372608000)*n^3 - (1495340558417657393233035721/177684955970610344256000)*n^2 + (3623955459298340527/485721041551200)*n - 732 for n>5

A219467 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX4 array.

Original entry on oeis.org

20, 211, 4838, 87083, 1306891, 17399442, 208345624, 2285009931, 23253970439, 221258732227, 1979908560027, 16752069750566, 134676183213583, 1033204910207865, 7592661274649504, 53621665489883610, 364978798507011324
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Column 4 of A219471

Examples

			Some solutions for n=3
..0..0..0..2....2..2..2..2....1..1..1..3....0..0..1..2....0..0..0..1
..0..0..1..2....2..2..0..0....1..2..2..3....1..1..0..0....0..0..2..1
..1..2..0..0....0..0..0..2....2..2..3..3....3..0..0..0....0..0..1..1
		

A219468 Number of nX5 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX5 array.

Original entry on oeis.org

35, 547, 28159, 1227441, 43792361, 1357658929, 37552353044, 947150536824, 22129769822973, 483036569368799, 9904217535401123, 191717483791553680, 3519902109176030571, 61551065872538233732, 1028861754560712576407
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Column 5 of A219471

Examples

			Some solutions for n=3
..1..1..2..2..2....0..0..1..1..1....2..2..2..0..0....0..0..1..0..2
..2..2..2..2..2....1..1..1..0..0....2..0..0..0..0....1..0..0..0..1
..3..3..2..2..3....1..3..1..0..2....1..0..0..2..3....0..0..0..1..3
		

A219469 Number of nX6 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX6 array.

Original entry on oeis.org

56, 1248, 143718, 14696377, 1222433026, 86755752059, 5432184254977, 310024709155795, 16405518197790913, 811074258908798713, 37650885062774172715, 1649171050584662652825, 68487713712896868019851
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Column 6 of A219471

Examples

			Some solutions for n=3
..0..0..1..2..2..1....0..0..0..2..2..2....0..0..0..2..2..2....0..0..0..1..1..0
..1..2..0..0..1..1....0..2..2..2..1..1....0..0..1..2..1..1....0..0..1..0..0..0
..0..0..0..0..1..1....3..3..3..3..0..0....0..0..2..3..1..3....1..3..1..0..1..3
		

A219472 Number of 2 X n arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 2 X n array.

Original entry on oeis.org

10, 23, 68, 211, 547, 1248, 2663, 5432, 10666, 20206, 36984, 65512, 112528, 187831, 305340, 484415, 751481, 1141999, 1702831, 2495049, 3597241, 5109370, 7157245, 9897666, 13524308, 18274412, 24436354, 32358166, 42457086, 55230217, 71266378
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2012

Keywords

Comments

Row 2 of A219471.

Examples

			Some solutions for n=3:
..2..2..2....2..2..2....0..0..1....1..1..1....2..2..2....1..1..1....0..0..1
..2..2..2....2..1..1....1..0..0....1..1..1....2..0..0....1..2..2....1..3..3
		

Crossrefs

Cf. A219471.

Formula

Empirical: a(n) = (1/13440)*n^8 + (1/10080)*n^7 + (1/576)*n^6 + (119/720)*n^5 - (9659/5760)*n^4 + (18247/1440)*n^3 - (50047/2016)*n^2 + (6437/840)*n + 13 for n>3.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(10 - 67*x + 221*x^2 - 413*x^3 + 424*x^4 - 153*x^5 - 91*x^6 + 35*x^7 + 124*x^8 - 129*x^9 + 49*x^10 - 7*x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)

A219473 Number of 3Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 3Xn array.

Original entry on oeis.org

20, 82, 673, 4838, 28159, 143718, 674954, 2941342, 11981143, 45898940, 166443227, 574474013, 1895549798, 6001932167, 18298398284, 53884690148, 153709998598, 425853237243, 1148567805278, 3022012284611, 7771027231688, 19561835095982
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Row 3 of A219471

Examples

			Some solutions for n=3
..0..0..2....1..1..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..2
..0..0..1....1..1..2....0..0..2....0..1..3....0..0..2....0..2..2....1..1..1
..0..0..1....3..2..3....3..2..2....3..0..0....2..2..2....3..2..2....3..1..1
		

Formula

Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/1448816114865931057506945219113779200000000)*n^37 + (1/21256761530851498141028539894333440000000)*n^36 - (757/247995551193267478311999632100556800000000)*n^35 + (4093/17713967942376248450857116578611200000000)*n^34 + (22907/520999057128713189731091664076800000000)*n^33 - (16139/7957076508874892352256672687718400000)*n^32 + (83764319/994634563609361544032084085964800000000)*n^31 + (549239/75761477976110107326205132800000000)*n^30 - (4678856243/7129996871751695656143971942400000000)*n^29 + (1496226007/25756967352797586935167057920000000)*n^28 - (653413544957/386354510291963804027505868800000000)*n^27 - (2975183387963/50709029475820249278610145280000000)*n^26 + (8806918400800111/811344471613123988457762324480000000)*n^25 - (11812904513950811/23181270617517828241650352128000000)*n^24 + (2067239075526283159/270448157204374662819254108160000000)*n^23 + (5489678448341620139/10384231897175311728802529280000000)*n^22 - (392659222400328327701/10384231897175311728802529280000000)*n^21 + (247423891090169051135981/225998646925797238897756864512000000)*n^20 - (1259752365431022645311581/654206609522044638914559344640000000)*n^19 - (2990270427949071173313147319/2570097394550889652878625996800000000)*n^18 + (1113341390309813951403492457/22047404119921847512439193600000000)*n^17 - (27170930857420612653952304299/28976588271897285302062940160000000)*n^16 - (271137930058645412943527770259/72441470679743213255157350400000000)*n^15 + (535219246244278434476862762431287/760635442137303739179152179200000000)*n^14 - (465297657459368886898913689163269/23769857566790741849348505600000000)*n^13 + (2384764688539478823620118815171/8980347604926844618407936000000)*n^12 - (1530415339594431692136387618041231/1920796571053797321159475200000000)*n^11 - (1852126074867674150037947762929883/51672635028348907526553600000000)*n^10 + (3777985100569138597814021070434363/6140112495652570801766400000000)*n^9 - (18055084608276660939474085529912310323/8793869116273611902289838080000000)*n^8 - (16027148120397118317452245023651668567/229007008236291976622131200000000)*n^7 + (146244839212731141496087089326560146347/111231975429056102930749440000000)*n^6 - (2021853520308780547462644486264447863/173027517334087271225610240000)*n^5 + (1473180274572635724831497308125294809/24718216762012467317944320000)*n^4 - (1282315843815358503748361492528617/8174013479501477287680000)*n^3 + (79251015920672692584467011831459/1243794691794272409792000)*n^2 + (221377469245024941019907/356195430470880)*n - 919752513 for n>16

A219474 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 4Xn array.

Original entry on oeis.org

35, 239, 5040, 87083, 1227441, 14696377, 157191488, 1532762665, 13807624794, 116296337706, 924459750842, 6973773054426, 50113925911679, 344224992704591, 2267656840216326, 14372813464098494, 87897599949502791, 519959958984757538
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Row 4 of A219471

Examples

			Some solutions for n=3
..2..2..2....1..1..2....0..0..2....1..1..2....1..1..2....0..0..2....1..1..0
..2..2..0....2..2..2....0..0..3....1..0..0....1..1..2....0..0..2....0..0..0
..0..0..0....3..0..0....1..1..2....0..0..0....1..1..3....2..0..0....0..0..2
..0..0..0....3..0..1....3..1..1....0..1..1....3..3..3....3..0..1....2..1..1
		

A219464 Number of n X n arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 n X n array.

Original entry on oeis.org

4, 23, 673, 87083, 43792361, 86755752059, 664221777830589
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Diagonal of A219471

Examples

			Some solutions for n=3
..0..0..2....0..0..0....0..0..2....0..0..2....0..0..0....1..1..2....2..2..2
..1..1..1....0..0..1....2..2..3....1..1..2....0..0..0....2..3..3....2..1..1
..2..1..2....3..1..1....3..0..0....2..0..0....0..0..0....3..3..3....3..0..0
		

A219470 Number of nX7 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX7 array.

Original entry on oeis.org

84, 2663, 674954, 157191488, 29873644925, 4758315482104, 664221777830589, 85045859176792827
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Column 7 of A219471

Examples

			Some solutions for n=3
..0..0..0..0..1..2..2....0..0..0..1..1..0..2....0..0..0..0..0..1..3
..0..0..1..0..2..1..2....0..0..0..0..0..0..0....0..0..0..0..0..2..0
..0..0..0..0..1..0..0....0..1..3..0..3..0..2....0..1..0..0..0..0..0
		
Showing 1-10 of 13 results. Next