cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219511 Pierce expansion of 144 - 64*sqrt(5).

Original entry on oeis.org

1, 9, 40, 161, 648, 51841, 207368, 5374978561, 21499914248, 57780789062419261441, 231123156249677045768, 6677239169351578707225356193679818792961, 26708956677406314828901424774719275171848
Offset: 0

Views

Author

Peter Bala, Nov 23 2012

Keywords

Comments

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 9. For other cases see A219508 (p = 3), A219509 (p = 5) and A219510 (p = 7).

Crossrefs

Cf. A081459, A219508 (p = 3), A219509 (p = 5), A219510 (p = 7).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[144 - 64*Sqrt[5] , 7!], 10] (* G. C. Greubel, Nov 15 2016 *)
  • PARI
    r=(9 + 4*sqrt(5))/16; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

Formula

a(2*n) = 2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n) + 2} for n >= 1.
a(2*n-1) = 1/2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n)} for n >= 1.
Recurrence equations: a(0) = 1, a(1) = 9 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.
144 - 64*sqrt(5) = 1 - 1/9 + 1/(9*40) - 1/(9*40*161) + 1/(9*40*161*648) - ....
a(2*n) = 8*A081459(n)^2 for n >= 2.
a(2*n+1) = A081459(n+2) for n >= 0.