A219527 a(n) = (6*n^2 + 7*n - 9 + 2*n^3)/12 - (-1)^n*(n+1)/4.
1, 3, 11, 19, 37, 55, 87, 119, 169, 219, 291, 363, 461, 559, 687, 815, 977, 1139, 1339, 1539, 1781, 2023, 2311, 2599, 2937, 3275, 3667, 4059, 4509, 4959, 5471, 5983, 6561, 7139, 7787, 8435, 9157, 9879, 10679, 11479, 12361, 13243
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A147973.
Programs
-
Mathematica
a[n_] := (6*n^2 + 7*n - 9 + 2*n^3)/12 - (-1)^n*(n + 1)/4; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Apr 05 2013 *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,11,19,37,55},50] (* Harvey P. Dale, Apr 01 2018 *)
Formula
a(n) = A168380(n+1) - 1.
a(n+3) - a(n+1) = 10,16,26,36,... = A137928(n+3).
G.f. x*(1 + x + 4*x^2 - 2*x^3 + x^5 - x^4) / ( (1+x)^2*(x-1)^4 ). - R. J. Mathar, Mar 27 2013
Comments