cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219527 a(n) = (6*n^2 + 7*n - 9 + 2*n^3)/12 - (-1)^n*(n+1)/4.

Original entry on oeis.org

1, 3, 11, 19, 37, 55, 87, 119, 169, 219, 291, 363, 461, 559, 687, 815, 977, 1139, 1339, 1539, 1781, 2023, 2311, 2599, 2937, 3275, 3667, 4059, 4509, 4959, 5471, 5983, 6561, 7139, 7787, 8435, 9157, 9879, 10679, 11479, 12361, 13243
Offset: 1

Views

Author

Paul Curtz, Nov 21 2012

Keywords

Comments

First column of the Mendeleyev-Moseley-Seaborg table (with alkali metals) or 31st column of the Janet table. See A138726.
(a(n+10) - a(n))/10 = 29, 36, 45, 54, ... = A061925(n+7) + 3.
b(n) = a(n+1) - 2*a(n) = 1, 5, -3, -1, -19, -23, -55, -69, -119, -147, -219, -265, -363, -431, ... contains -a(2*n).
b(2*n-1) - b(2*n-2) = 4, 2, -4, -14, -28, -46, -68, ... = A147973(n+3).

Crossrefs

Cf. A147973.

Programs

  • Mathematica
    a[n_] := (6*n^2 + 7*n - 9 + 2*n^3)/12 - (-1)^n*(n + 1)/4; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Apr 05 2013 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,3,11,19,37,55},50] (* Harvey P. Dale, Apr 01 2018 *)

Formula

a(n) = A168380(n+1) - 1.
a(n+2) - a(n+1) = A093907(n) = A137583(n+1).
a(n+3) - a(n+1) = 10,16,26,36,... = A137928(n+3).
G.f. x*(1 + x + 4*x^2 - 2*x^3 + x^5 - x^4) / ( (1+x)^2*(x-1)^4 ). - R. J. Mathar, Mar 27 2013