A219538 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2.
1, 2, 12, 98, 924, 9468, 102432, 1151410, 13315692, 157406876, 1893480264, 23103024084, 285233168760, 3556744196000, 44730062281800, 566683825859730, 7225564521956940, 92653105887920556, 1194068058333608136, 15457771628663418748, 200916876963088849992
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 12*x^2 + 98*x^3 + 924*x^4 + 9468*x^5 + 102432*x^6 +... Related expansions: A(x)^2 = 1 + 4*x + 28*x^2 + 244*x^3 + 2384*x^4 + 24984*x^5 +... A(2)^3 = 1 + 6*x + 48*x^2 + 446*x^3 + 4524*x^4 + 48588*x^5 +... A(2)^4 = 1 + 8*x + 72*x^2 + 712*x^3 + 7504*x^4 + 82704*x^5 +... where A(x) = 1 + x*(A(x)^2 + 2*A(x)^3 + A(x)^4)/2. The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where F(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 +...+ 2*A000108(n)*x^n +... The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = 1 + 2*x + 8*x^2 + 42*x^3 + 252*x^4 + 1636*x^5 +...+ A100327(n)*x^n +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..870
Programs
-
Mathematica
CoefficientList[Sqrt[1/x*InverseSeries[Series[x^3/(1-x-Sqrt[1-4*x])^2, {x, 0, 20}], x]],x] (* Vaclav Kotesovec, Dec 28 2013 *)
-
PARI
/* Formula A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2: */ {a(n)=local(A=1);for(i=1,n,A=1+x*A^2*(1+A +x*O(x^n))^2/2);polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
-
PARI
/* Formula using Series Reversion involving Catalan numbers: */ {a(n)=local(A=1);A=(1-x-sqrt(1-4*x +x^3*O(x^n)))/x; polcoeff(sqrt(1/x*serreverse(x/A^2)), n)} for(n=0,25,print1(a(n),", "))
Formula
Let F(x) = (1-x - sqrt(1 - 4*x)) / x, then g.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion(x/F(x)^2) ),
(2) A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2),
where F(x) = 2*C(x) - 1 such that C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Let G(x) be the g.f. of A100327, then g.f. A(x) satisfies:
(3) A(x) = (1/x)*Series_Reversion(x/G(x)),
(4) A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
Recurrence: 3*n*(3*n-1)*(3*n+1)*(11*n-14)*a(n) = 3*(2*n-1)*(693*n^3 - 1575*n^2 + 1026*n - 176)*a(n-1) + 2*(n-2)*(2*n-3)*(2*n-1)*(11*n-3)*a(n-2). - Vaclav Kotesovec, Dec 28 2013
a(n) ~ sqrt(242+66*sqrt(33)) * (7+11/9*sqrt(33))^n / (66*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 28 2013
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 2^(n-2*k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 02 2024