A219560 Number of tripartite partitions of (n,n,n) into distinct triples.
1, 5, 40, 364, 2897, 21369, 148257, 970246, 6032341, 35850410, 204646488, 1126463948, 5999145787, 30999381232, 155798366059, 763194776551, 3650648583934, 17079277343463, 78262895082681, 351708874155894, 1551843168854346
Offset: 0
Examples
a(0) = 1: []. a(1) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(0,1,1),(1,0,0)], [(0,0,1),(0,1,0),(1,0,0)].
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0, add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n})) end: a:= n-> b(30^n$2): seq(a(n), n=0..10); # Alois P. Heinz, May 26 2013
-
Mathematica
b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d - 1]], {d, Divisors[n][[2 ;; -2]]}]]; a[0] = 1; a[n_] := b[30^n, 30^n]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
Formula
a(n) = [(x*y*z)^n] 1/2 * Product_{i,j,k>=0} (1+x^i*y^j*z^k).
Extensions
a(16) from Alois P. Heinz, May 26 2013
a(17) from Alois P. Heinz, Sep 24 2014
More terms from Jean-François Alcover, Jan 15 2016
Comments