cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219560 Number of tripartite partitions of (n,n,n) into distinct triples.

Original entry on oeis.org

1, 5, 40, 364, 2897, 21369, 148257, 970246, 6032341, 35850410, 204646488, 1126463948, 5999145787, 30999381232, 155798366059, 763194776551, 3650648583934, 17079277343463, 78262895082681, 351708874155894, 1551843168854346
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r)^n into distinct factors where p, q, r are distinct primes.

Examples

			a(0) = 1: [].
a(1) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(0,1,1),(1,0,0)], [(0,0,1),(0,1,0),(1,0,0)].
		

Crossrefs

Column k=3 of A219585.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(30^n$2):
    seq(a(n), n=0..10);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d - 1]], {d, Divisors[n][[2 ;; -2]]}]]; a[0] = 1; a[n_] := b[30^n, 30^n];  Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)

Formula

a(n) = [(x*y*z)^n] 1/2 * Product_{i,j,k>=0} (1+x^i*y^j*z^k).

Extensions

a(16) from Alois P. Heinz, May 26 2013
a(17) from Alois P. Heinz, Sep 24 2014
More terms from Jean-François Alcover, Jan 15 2016