cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A219585 Number A(n,k) of k-partite partitions of {n}^k into distinct k-tuples; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 5, 2, 1, 1, 15, 40, 17, 2, 1, 1, 52, 457, 364, 46, 3, 1, 1, 203, 6995, 14595, 2897, 123, 4, 1, 1, 877, 136771, 937776, 407287, 21369, 323, 5, 1, 1, 4140, 3299218, 88507276, 107652681, 10200931, 148257, 809, 6, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

A(n,k) is the number of factorizations of m^n into distinct factors where m is a product of k distinct primes. A(2,2) = 5: (2*3)^2 = 36 has 5 factorizations into distinct factors: 36, 3*12, 4*9, 2*18, 2*3*6.

Examples

			A(1,3) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
A(3,2) = 17: [(3,3)], [(3,0),(0,3)], [(3,2),(0,1)], [(2,3),(1,0)], [(3,1),(0,2)], [(2,2),(1,1)], [(1,3),(2,0)], [(2,1),(1,2)], [(2,1),(1,1),(0,1)], [(3,0),(0,2),(0,1)], [(2,2),(1,0),(0,1)], [(2,1),(0,2),(1,0)], [(1,2),(2,0),(0,1)], [(1,2),(1,1),(1,0)], [(0,3),(2,0),(1,0)], [(2,0),(1,1),(0,2)], [(2,0),(0,2),(1,0),(0,1)].
Square array A(n,k) begins:
  1,  1,   1,      1,          1,            1,         1, ...
  1,  1,   2,      5,         15,           52,       203, ...
  1,  1,   5,     40,        457,         6995,    136771, ...
  1,  2,  17,    364,      14595,       937776,  88507276, ...
  1,  2,  46,   2897,     407287,    107652681,  ...
  1,  3, 123,  21369,   10200931,  10781201973,  ...
  1,  4, 323, 148257,  233051939,  ...
  1,  5, 809, 970246, 4909342744,  ...
		

Crossrefs

Columns k=0..5 give: A000012, A000009, A219554, A219560, A219561, A219565.
Rows n=0..3 give: A000012, A000110, A094574, A319591.
Cf. A188445, A219727 (partitions of {n}^k into k-tuples), A318286.

Programs

  • Mathematica
    f[n_, k_] := f[n, k] = 1/2 Product[Sum[O[x[j]]^(n+1), {j, 1, k}]+1+ Product[x[j]^i[j], {j, 1, k}], Evaluate[Sequence @@ Table[{i[j], 0, n}, {j, 1, k}]]];
    a[0, ] = a[, 0] = 1; a[n_, k_] := SeriesCoefficient[f[n, k], Sequence @@ Table[{x[j], 0, n}, {j, 1, k}]];
    Table[Print[a[n-k, k]]; a[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013, updated Sep 16 2019 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)} \\ Andrew Howroyd, Dec 16 2018

Formula

A(n,k) = [(Product_{j=1..k} x_j)^n] 1/2 * Product_{i_1,...,i_k>=0} (1+Product_{j=1..k} x_j^i_j).

A219554 Number of bipartite partitions of (n,n) into distinct pairs.

Original entry on oeis.org

1, 2, 5, 17, 46, 123, 323, 809, 1966, 4660, 10792, 24447, 54344, 118681, 254991, 539852, 1127279, 2323849, 4733680, 9535079, 19005282, 37507802, 73333494, 142112402, 273092320, 520612305, 984944052, 1849920722, 3450476080, 6393203741, 11770416313, 21538246251
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2012

Keywords

Comments

Number of factorizations of p^n*q^n into distinct factors where p, q are distinct primes.
From Vaclav Kotesovec, Feb 05 2016: (Start)
Formula (15) in the article by S. M. Luthra: "Partitions of bipartite numbers when the summands are unequal", p. 376, is incorrect. The similar error is also in the article by F. C. Auluck: "On partitions of bipartite numbers" (see A002774).
The correct formula (15) is q(m, n) ~ c/(2*sqrt(3)*Pi) * exp(3*c*(m*n)^(1/3) + 3*d*(m^(2/3)/n^(1/3) + n^(2/3)/m^(1/3)) - 3*log(2)/4 + (m/n + n/m)*log(2)/12 + 3*d^2/c - 3*d^2*(m/n + n/m)/c - 2*log(m*n)/3), where m and n are of the same order, c = (3/4*Zeta(3))^(1/3), d = Zeta(2)/(12*c).
If m = n then q(m,n) = a(n).
For the asymptotic formula for fixed m see A054242.
(End)

Examples

			a(0) = 1: [].
a(1) = 2: [(1,1)], [(1,0),(0,1)].
a(2) = 5: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(1,2),(1,0)], [(1,1),(1,0),(0,1)].
		

Crossrefs

Programs

  • Mathematica
    (* This program is not convenient for a large number of terms *)
    a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[x]^(n+1) + O[y]^(n+1) + (1 + x^i y^j ), {i, 0, n}, {j, 0, n}] // Normal, (x y)^n]];
    a /@ Range[0, 31] (* Jean-François Alcover, Jun 26 2013, updated Sep 16 2019 *)
    nmax = 20; p = 1; Do[Do[p = Expand[p*(1 + x^i*y^j)]; If[i*j != 0, p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &]], {i, 0, nmax}], {j, 0, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}]}] (* Vaclav Kotesovec, Jan 15 2016 *)

Formula

a(n) = [x^n*y^n] 1/2 * Product_{i,j>=0} (1+x^i*y^j).
a(n) = A054242(2*n,n) = A201377(n,n).
a(n) ~ Zeta(3)^(1/3) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3) + Pi^2 * n^(1/3) / (6^(4/3) * Zeta(3)^(1/3)) - Pi^4/(1296*Zeta(3))) / (2^(9/4) * 3^(1/6) * Pi * n^(4/3)). - Vaclav Kotesovec, Jan 31 2016

A280473 G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 43, 70, 127, 215, 364, 591, 989, 1562, 2515, 3954, 6194, 9538, 14754, 22349, 33926, 50910, 76102, 112721, 166747, 244205, 356984, 518344, 749924, 1078711, 1547668, 2207418, 3140135, 4446572, 6276657, 8823776, 12371487, 17275879, 24061878
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
    nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A007425[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 30 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018

A219561 Number of 4-partite partitions of (n,n,n,n) into distinct quadruples.

Original entry on oeis.org

1, 15, 457, 14595, 407287, 10200931, 233051939, 4909342744, 96272310302, 1771597038279, 30795582025352, 508466832109216, 8011287089600483, 120926718707154007, 1754672912487450236, 24547188914867491083, 331937179344717327559, 4348524173437743243649, 55300773426746984710983
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s)^n into distinct factors where p, q, r, s are distinct primes.

Examples

			a(0) = 1: [].
a(1) = 15: [(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)], [(0,0,1,1),(1,0,0,0),(0,1,0,0)], [(0,1,0,1),(1,0,0,0),(0,0,1,0)], [(0,1,1,0),(1,0,0,0),(0,0,0,1)], [(1,0,0,1),(0,1,0,0),(0,0,1,0)], [(1,0,0,1),(0,1,1,0)], [(1,0,1,0),(0,1,0,0),(0,0,0,1)], [(1,0,1,0),(0,1,0,1)], [(1,1,0,0),(0,0,1,0),(0,0,0,1)], [(1,1,0,0),(0,0,1,1)], [(0,1,1,1),(1,0,0,0)], [(1,0,1,1),(0,1,0,0)], [(1,1,0,1),(0,0,1,0)], [(1,1,1,0),(0,0,0,1)], [(1,1,1,1)].
		

Crossrefs

Column k=4 of A219585.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + w^i x^j y^k z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {m, 0, n}] // Normal, (w x y z)^n]];
    Table[Print[n]; a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 16 2019 *)

Formula

a(n) = [(w*x*y*z)^n] 1/2 * Product_{i,j,k,m>=0} (1+w^i*x^j*y^k*z^m).

Extensions

a(9) from Alois P. Heinz, Oct 15 2014
a(10)-a(18) from Andrew Howroyd, Dec 17 2018

A219565 Number of 5-partite partitions of (n,n,n,n,n) into distinct quintuples.

Original entry on oeis.org

1, 52, 6995, 937776, 107652681, 10781201973, 958919976957, 76861542428397, 5620227129073491, 378709513816248475, 23713852762539359688, 1389561695379881634055, 76647024053735036288641, 3999799865715906390697377, 198328846122797866982616805, 9379277765981012067789260214
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s*t)^n into distinct factors where p, q, r, s, t are distinct primes.

Crossrefs

Column k=5 of A219585.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (1/2) Coefficient[Product[O[v]^(n+1) + O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + v^i w^j x^k y^l z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}, {m, 0, n}] // Normal, (v w x y z)^n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 24 2019 *)

Formula

a(n) = [(v*w*x*y*z)^n] 1/2 * Product_{h,i,j,k,m>=0} (1+v^h*w^i*x^j*y^k*z^m).

Extensions

a(6) from Alois P. Heinz, Sep 25 2014
a(7)-a(15) from Andrew Howroyd, Dec 16 2018

A219678 Number of tripartite partitions of (n,n,n) into triples.

Original entry on oeis.org

1, 5, 66, 686, 6721, 58616, 476781, 3608348, 25781989, 174810494, 1132328205, 7037425172, 42140788751, 243918472743, 1368647208107, 7462686474948, 39626100989332, 205283558905562, 1039263967957447, 5149048724566723, 24998922141116056, 119073277412589351
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2012

Keywords

Comments

a(n) is also the number of factorizations of m^n where m is a product of 3 distinct primes. a(1) = 5: (2*3*5)^1 = 30 has 5 factorizations: 30, 5*6, 3*10, 2*3*5, 2*15.

Examples

			a(1) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
		

Crossrefs

Column k=3 of A219727.
Cf. A219560.

Extensions

More terms from Sean A. Irvine, Aug 14 2014
Showing 1-6 of 6 results.