A219570 Triangular array read by rows. T(n,k) is the number of necklaces (turning over is not allowed) of n labeled black or white beads having exactly k black beads.
0, 1, 1, 1, 2, 1, 2, 6, 6, 2, 6, 24, 36, 24, 6, 24, 120, 240, 240, 120, 24, 120, 720, 1800, 2400, 1800, 720, 120, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040, 40320, 362880, 1451520, 3386880, 5080320, 5080320, 3386880, 1451520, 362880, 40320
Offset: 0
Examples
0; 1, 1; 1, 2, 1; 2, 6, 6, 2; 6, 24, 36, 24, 6; 24, 120, 240, 240, 120, 24; 120, 720, 1800, 2400, 1800, 720, 120; 720, 5040, 15120, 25200, 25200, 15120, 5040, 720;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
Programs
-
Mathematica
nn=8;f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Log[1/(1-(y+1)x)],{x,0,nn}],{x,y}],1]]//Grid
-
PARI
T(n, k) = if(n>0, (n-1)! * binomial(n, k)); \\ Andrew Howroyd, Oct 11 2017
Formula
E.g.f.: log(1/(1 - (y + 1)*x)).
T(n, k) = (n-1)! * binomial(n, k) for n > 0. - Andrew Howroyd, Oct 11 2017
Comments