cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A219589 Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 n X 2 array.

Original entry on oeis.org

3, 7, 21, 46, 87, 151, 247, 386, 581, 847, 1201, 1662, 2251, 2991, 3907, 5026, 6377, 7991, 9901, 12142, 14751, 17767, 21231, 25186, 29677, 34751, 40457, 46846, 53971, 61887, 70651, 80322, 90961, 102631, 115397, 129326, 144487, 160951, 178791
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2012

Keywords

Comments

Column 2 of A219595.

Examples

			Some solutions for n=3:
..0..0....0..0....0..0....1..0....0..0....1..1....0..0....2..2....1..0....0..0
..1..0....2..0....0..0....0..0....1..0....1..1....0..0....2..2....0..0....0..0
..1..1....2..2....1..1....1..0....0..0....2..1....2..0....2..2....2..0....0..0
		

Crossrefs

Cf. A219595.

Formula

Empirical: a(n) = (1/12)*n^4 - (1/3)*n^3 + (47/12)*n^2 - (14/3)*n + 2 for n>1.
Conjectures from Colin Barker, Mar 12 2018: (Start)
G.f.: x*(3 - 8*x + 16*x^2 - 19*x^3 + 12*x^4 - 2*x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A219590 Number of n X 3 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 n X 3 array.

Original entry on oeis.org

6, 18, 84, 264, 705, 1739, 4129, 9518, 21271, 46019, 96412, 195879, 386603, 742477, 1389545, 2537385, 4526097, 7895059, 13481452, 22558778, 37028253, 59679103, 94537481, 147328016, 226076963, 341891611, 509957092, 750799089, 1091869239
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2012

Keywords

Comments

Column 3 of A219595.

Examples

			Some solutions for n=3:
..0..0..0....1..1..0....0..0..0....1..0..0....2..1..1....1..0..0....1..0..0
..1..0..0....1..0..0....1..0..0....1..1..0....2..2..1....2..1..0....2..1..0
..2..0..0....2..0..0....1..2..0....1..1..1....2..2..2....2..2..1....2..2..2
		

Crossrefs

Cf. A219595.

Formula

Empirical: a(n) = (1/13305600)*n^11 + (1/1814400)*n^10 - (1/48384)*n^9 + (67/120960)*n^8 - (1009/403200)*n^7 + (403/86400)*n^6 + (106961/241920)*n^5 - (1857341/362880)*n^4 + (10083109/302400)*n^3 - (4379099/50400)*n^2 + (889043/9240)*n - 17 for n>2.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(6 - 54*x + 264*x^2 - 876*x^3 + 2091*x^4 - 3619*x^5 + 4579*x^6 - 4324*x^7 + 3206*x^8 - 1982*x^9 + 1025*x^10 - 397*x^11 + 93*x^12 - 9*x^13) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>14.
(End)

A219591 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.

Original entry on oeis.org

10, 34, 233, 1114, 4350, 16117, 60252, 226309, 831045, 2932198, 9899904, 32047091, 99786646, 299774977, 871181292, 2454943142, 6722356023, 17921513868, 46593529264, 118305418513, 293738371262, 713963398966, 1700512384149
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Column 4 of A219595

Examples

			Some solutions for n=3
..1..1..0..0....2..2..0..0....0..0..0..0....1..1..0..0....1..1..0..0
..1..1..1..0....2..2..1..0....0..0..0..0....1..1..1..0....1..1..1..0
..2..2..2..2....2..2..1..1....2..1..1..1....2..1..0..0....1..1..1..2
		

Formula

Empirical: a(n) = (1/81868166608700944023552000000)*n^29 - (67/33876482734634873389056000000)*n^28 + (1093/7259246300278901440512000000)*n^27 - (1/940621483677214310400000)*n^26 - (47119/62044840173323943936000000)*n^25 + (1869449/24817936069329577574400000)*n^24 - (296052733/86862776242653521510400000)*n^23 + (54522829/1510656978133104721920000)*n^22 + (167845631/29428382690904637440000)*n^21 - (6024199483/14013515567097446400000)*n^20 + (8467657127141/539520349333251686400000)*n^19 - (2932958591041/11358323143857930240000)*n^18 - (12704169291856247/2584018515227679129600000)*n^17 + (47097728297965439/101334059420693299200000)*n^16 - (1011984217642567843/65143323913302835200000)*n^15 + (364057784069101777/1240825217396244480000)*n^14 - (56366476163066975107/28395807859644825600000)*n^13 - (904186645491855977543/14197903929822412800000)*n^12 + (6474020741492280364763/2600993419650662400000)*n^11 - (1166634295507637525043197/25749834854541557760000)*n^10 + (717109824273215889502078381/1517400982499770368000000)*n^9 - (6363461015557560073335283/4014288313491456000000)*n^8 - (11656748989007326967754487087/323150209236062208000000)*n^7 + (3938184473751556080945711017/5385836820601036800000)*n^6 - (163994244837799128753946400473/22690331049754368000000)*n^5 + (30438522365937746680601642677/680709931492631040000)*n^4 - (60274458996187160134975931/347300985455424000)*n^3 + (102759246483272304467447/275635702742400)*n^2 - (195156984499999649389/776363187600)*n - 310620487 for n>13

A219592 Number of nX5 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX5 array.

Original entry on oeis.org

15, 55, 550, 4152, 26006, 164075, 1093496, 7362866, 47724022, 292277921, 1695340197, 9384561666, 49848123324, 254860709784, 1257031665966, 5994561288262, 27703365847356, 124331694874481, 542842646444008
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Column 5 of A219595

Examples

			Some solutions for n=3
..1..1..0..0..0....2..0..0..0..0....1..0..0..0..0....1..1..1..1..0
..1..1..0..0..0....2..1..0..0..0....1..1..0..0..0....1..1..1..0..0
..1..1..1..0..0....2..2..1..1..0....2..1..2..2..1....2..1..0..0..0
		

A219593 Number of nX6 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX6 array.

Original entry on oeis.org

21, 81, 1188, 14793, 156964, 1767430, 21435360, 259297241, 2992271478, 32522357305, 335372829196, 3312669542090, 31487964667940, 288434629481468, 2549339374347045, 21786411636714179, 180452978644995861
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Column 6 of A219595

Examples

			Some solutions for n=3
..2..1..1..1..0..0....0..0..0..0..0..0....1..1..0..0..0..0....1..0..0..0..0..0
..2..2..1..1..1..0....1..0..0..0..0..0....1..1..0..0..0..0....1..1..0..0..0..0
..2..2..2..1..1..2....2..2..0..0..0..0....1..0..0..0..0..1....1..1..1..1..1..1
		

A219596 Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.

Original entry on oeis.org

6, 21, 84, 233, 550, 1188, 2415, 4684, 8746, 15833, 27945, 48286, 81907, 136629, 224336, 362747, 577797, 906780, 1402432, 2138159, 3214644, 4768098, 6980453, 10091830, 14415652, 20356811, 28433339, 39302076, 53788873, 72923915, 97982798
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2012

Keywords

Comments

Row 3 of A219595.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..1
..1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..1..1
..2..1..0....2..2..1....0..0..0....1..1..1....1..0..0....1..1..0....2..2..2
		

Crossrefs

Cf. A219595.

Formula

Empirical: a(n) = (1/181440)*n^9 - (1/8064)*n^8 + (11/3780)*n^7 - (107/2880)*n^6 + (749/1728)*n^5 - (1943/1152)*n^4 + (168241/90720)*n^3 + (355057/10080)*n^2 - (306913/2520)*n + 137 for n>3.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(6 - 39*x + 144*x^2 - 382*x^3 + 740*x^4 - 1009*x^5 + 933*x^6 - 554*x^7 + 195*x^8 - 32*x^9 - 5*x^10 + 7*x^11 - 2*x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)

A219597 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

Original entry on oeis.org

10, 46, 264, 1114, 4152, 14793, 51122, 170728, 550156, 1714425, 5181670, 15217623, 43453991, 120646669, 325663378, 854806408, 2182941966, 5428211529, 13157408701, 31124038143, 71939605189, 162674579688, 360302418944
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Row 4 of A219595

Examples

			Some solutions for n=3
..0..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....0..0..0
..0..0..0....1..0..0....1..0..0....1..0..0....0..0..0....2..0..0....1..0..0
..0..0..0....0..0..0....1..1..0....1..1..0....2..0..0....2..1..0....1..0..0
..1..1..0....0..0..0....1..1..2....1..2..2....2..2..1....2..1..1....1..1..0
		

Formula

Empirical: a(n) = (1/32315020923606220800000)*n^25 - (109/11079435745236418560000)*n^24 + (2143/1292600836944248832000)*n^23 - (79003/421500272916602880000)*n^22 + (50173/3193183885731840000)*n^21 - (44960737/43792236147179520000)*n^20 + (27515689/510909421717094400)*n^19 - (60384781/26191528796160000)*n^18 + (21813448039/268899695640576000)*n^17 - (2221068910103/949057749319680000)*n^16 + (9482825036023/173993920708608000)*n^15 - (91557547148539/93211028951040000)*n^14 + (5251971236010727/434984801771520000)*n^13 - (62481716542887379/1491376463216640000)*n^12 - (9282784846386031/3954407288832000)*n^11 + (4293029543793101017/59316109332480000)*n^10 - (105931313393469849253/84031154887680000)*n^9 + (202993929290792591407/13095764398080000)*n^8 - (3712306914099958615759/26609865714432000)*n^7 + (11336104215245400553903/12671364625920000)*n^6 - (369076146776783247776693/101634903770400000)*n^5 + (41196192835097343490679/9034213668480000)*n^4 + (15522433799255326230017/346311523958400)*n^3 - (23040269972514059058427/74209612276800)*n^2 + (112252070661045629/127481640)*n - 1011429662 for n>12

A219598 Number of 5Xn arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 5Xn array.

Original entry on oeis.org

15, 87, 705, 4350, 26006, 156964, 939006, 5466749, 30837420, 168947111, 901097968, 4680202369, 23651533225, 116192356397, 554663937245, 2572846819549, 11600123422679, 50863765123285, 217051630988778, 902189285684499
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Row 5 of A219595

Examples

			Some solutions for n=3
..0..0..0....1..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..1..1
..0..0..0....1..1..0....1..1..0....0..0..0....1..0..0....1..0..0....1..1..0
..0..0..0....1..0..0....1..1..1....1..0..0....1..2..0....1..1..2....1..0..0
..0..0..0....2..1..0....1..1..1....1..1..0....2..2..2....1..0..0....1..0..0
..1..0..1....2..1..1....2..2..1....2..1..1....2..2..2....0..0..0....1..1..0
		

A219588 Number of n X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 n X n array.

Original entry on oeis.org

3, 7, 84, 1114, 26006, 1767430, 415752625
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Diagonal of A219595

Examples

			Some solutions for n=3
..0..0..0....1..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..0..0
..1..0..0....1..1..0....2..1..0....2..0..0....1..0..0....0..0..0....2..0..0
..0..0..0....2..1..1....2..2..1....2..2..2....2..0..0....2..2..0....2..0..0
		

A219594 Number of nX7 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX7 array.

Original entry on oeis.org

28, 112, 2415, 51122, 939006, 18945258, 415752625, 9020862207, 186931045741, 3664369196641
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Column 7 of A219595

Examples

			Some solutions for n=3
..1..1..1..0..0..0..0....0..0..0..0..0..0..0....2..0..0..0..0..0..0
..1..1..0..0..0..0..0....0..0..0..0..0..0..0....2..1..0..0..0..0..0
..2..2..1..0..0..1..2....2..2..2..1..1..1..1....2..1..0..0..0..0..0
		
Showing 1-10 of 12 results. Next